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In this thesis, we describe plausible lattice-based constructions with properties that approximate the

sought-after multilinear maps in hard-discrete-logarithm groups. The security of our constructions

relies on seemingly hard problems in ideal lattices, which can be viewed as extensions of the

assumed hardness of the NTRU function. These new constructions radically enhance our tool set

and open a floodgate of applications.
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López-Alt and Daniel Wichs. Why ”Fiat-Shamir for Proofs” Lacks a Proof. In Amit Sahai, editor,

TCC 2013: 10th Theory of Cryptography Conference, volume 7785 of Lecture Notes in Computer

Science, pages 182-201, Tokyo, Japan, March 3-6, 2013. Springer, Berlin, Germany.

Sanjam Garg, Abishek Kumarasubramanian, Rafail Ostrovsky, and Ivan Visconti. Impossibility

Results for Static Input Secure Computation. In Reihaneh Safavi-Naini and Ran Canetti, editors,

Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,

pages 424–442, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Berlin, Germany.

Sanjam Garg and Amit Sahai. Adaptively Secure Multi-party Computation with Dishonest Major-

ity. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012,

volume 7417 of Lecture Notes in Computer Science, pages 105–123, Santa Barbara, CA, USA,

August 19–23, 2012. Springer, Berlin, Germany.

Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently Secure Computation

in Constant Rounds. In David Pointcheval and Thomas Johansson, editors, Advances in Cryp-

tology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 99–116,

Cambridge, UK, April 15–19, 2012. Springer, Berlin, Germany.

Sanjam Garg, Rafail Ostrovsky, Ivan Visconti, and Akshay Wadia. Resettable Statistical Zero

xi



www.manaraa.com

Knowledge. In Ronald Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference,

volume 7194 of Lecture Notes in Computer Science, pages 494–511, Taormina, Sicily, Italy,

March 19–21, 2012. Springer, Berlin, Germany.

Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-Resilient Zero Knowledge. In Phillip

Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in

Computer Science, pages 297–315, Santa Barbara, CA, USA, August 14–18, 2011. Springer,

Berlin, Germany.

Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and Dominique Unruh. Round
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CHAPTER 1

Introduction

The aim of cryptography is to design primitives and protocols that withstand adversarial behav-

ior. Information theoretic cryptography, how-so-ever desirable, is extremely restrictive and most

non-trivial cryptographic tasks are known to be information theoretically impossible. In order to

realize sophisticated cryptographic primitives, we forgo information theoretic security and assume

limitations on what can be efficiently computed. In other words we attempt to build secure sys-

tems conditioned on some computational intractability assumption such as – factoring [RSA78],

discrete log [Knu97], decisional Diffe-Hellman [DH76], learning with errors [Reg05] and many

more (see [Ver13]).

Last decade has seen a push towards using structured assumptions such as the ones based

on bilinear maps, for realizing sophisticated cryptographic goals otherwise considered impossible

according to folklore. For example, bilinear pairings have been used to design ingenious protocols

for tasks such as one-round three-party key exchange [Jou00], identity-based encryption [BF01],

and non-interactive zero-knowledge proofs [GOS06]. By now the applications of bilinear maps

have become too numerous to name.

1
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Boneh and Silverberg [BS03] showed that cryptographic groups equipped with multilinear

maps would have even more interesting applications, including one-round multi-party key ex-

change and very efficient broadcast encryption. However they presented strong evidence that such

maps should be hard to construct. In particular, they attempted to construct multilinear maps from

abelian varieties (extending known techniques for constructing bilinear maps), but identified seri-

ous obstacles, and concluded that “such maps might have to either come from outside the realm of

algebraic geometry, or occur as ‘unnatural’ computable maps arising from geometry.” Since then,

the persistent absence of cryptographically useful multilinear maps has not stopped researchers

from proposing applications of them. For example, Rückert and Schröder [RS09] use multilinear

maps to construct efficient aggregate and verifiably encrypted signatures without random oracles.

Papamanthou, Tamassia and Triandopoulos [PTT10] show that “compact” multilinear maps give

very efficient authenticated data structures. Recently, Rothblum [Rot13] used multilinear maps to

construct a counterexample to the conjecture that all bit-encryption schemes are [CL01, BRS03]

circularly secure (secure when bit-encryptions of the secret key are also given out).

1.1 Our Results

In this work [GGH13a, GGH12] we put forth new plausible lattice-based constructions with prop-

erties that approximate the sought after multilinear maps. The multilinear analog of the decision

Diffie-Hellman problem appears to be hard in our construction, and this allows for their use in

cryptography. These construction open doors to a providing solutions (see Section 1.3 for details)

to a number of important open problems.

Functionality. Our multilinear maps are approximate in the sense that they are “noisy.” Fur-

thermore they are bounded to a polynomial degree. For very high degree, in our maps, the “nois-

iness” overwhelms the signal, somewhat like for ciphertexts in somewhat homomorphic encryp-

tion [Gen09a] schemes. In light of their noisiness, one could say that our multilinear maps are

indeed “unnatural” computable maps arising from geometry. As a consequence, our multilin-

2
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ear maps differ quite substantially from the “ideal” multilinear maps envisioned by Boneh and

Silverberg[BS03].

The boundedness of our encodings has interesting consequences, both positive and negative.

On the positive side, it hinders an attack based on Boneh and Lipton’s subexponential algorithm

for solving the discrete logarithm in black box fields [BL96]. This attack cannot be used to solve

the “discrete log” problem in our setting, since their algorithm requires exponentiations with ex-

ponential degree. On the negative size, the dependence between the degree and parameter-size

prevents us from realizing applications such as the ones envisioned by [PTT10] because they need

“compact” maps. Similarly, so far we were not able to use our maps to realize Rothblum’s coun-

terexample to the circular security of bit encryption conjecture [Rot13]. That counterexample

requires degree that is polynomial, but a polynomial that is always just out of our reach of our

parameters.

Security. The security of the multilinear-DDH problem in our constructions relies on new hard-

ness assumptions, and we provide an extensive cryptanalysis to validate these assumptions. To

make sure that our constructions are not “trivially” insecure, we prove that our constructions are

secure against adversaries that merely run an arithmetic straight-line [Kal85a, Kal85b] program.

We also analyze our constructions with respect to the best known averaging, algebraic and lat-

tice attacks. Many of these attacks have been published before [CS97, HKL+00, Gen01, GS02,

Szy03, HGS04, NR06, NR09, DN12b] in the context of cryptanalysis of the NTRU [HPS01,

HHGP+03] and GGH [GGH97] signature scheme. We also present new attacks on principal ideal

lattices, which arise in our constructions, that are more efficient than (known) attacks on general

ideal lattices. Our constructions remain secure against all of the attacks that we present, both old

and new.

Finally we note that some problems that are believed hard relative to contemporary bilinear

maps are easy with our construction (see Section 5.5).

3
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1.2 Brief Overview

In his breakthrough result, Gentry [Gen09a] constructed a fully-homomorphic encryption scheme

that enabled arbitrary computation on encrypted data without being able to decrypt. However for

many applications, the ability to perform arbitrary computation on encrypted data along with the

ability to check if two ciphertexts encrypt the same message is essential. In his scheme, Gentry

relied on “noise” to hide messages. The presence of noise, which helps hide messages without

restricting arbitrary computation on them, seems to be in conflict with the goal of equality check-

ing. In our constructions we overcome this obstacle by introducing techniques that enable equality

testing even in the presence of noise. Here we present an overview of our construction.

Our constructions work in polynomial rings and use principal ideals in these rings (and their

associated lattices). In a nutshell, an instance of our construction has a secret short ring element

g ∈ R, generating a principal ideal I = 〈g〉 ⊂ R. In addition, it has an integer parameter q and

another secret z ∈ R/qR, which is chosen at random (and hence is not small).

We think of a term like gx in a discrete-log system as an “encoding” of the “plaintext expo-

nent” x. In our case the role of the “plaintext exponents” is played by the elements in R/I (i.e.

cosets of I), and we “encode” them via division by z in Rq. In a few more details, our system

provides many levels of encoding, where a level-i encoding of the coset eI = e + I is an element

of the form c/zi mod q where c ∈ eI is short. It is easy to see that such encodings can be both

added and multiplied, so long as the numerators remain short. More importantly, we show that

it is possible to publish a “zero testing parameter” that enables to test if two elements encode the

same coset at a given level, without violating security (e.g., it should still be hard to compute x

from an encoding of x at higher levels). Namely, we add to the public parameters an element of

the form pzt = h · zκ/g mod q for a not-too-large h, where κ is the level of multilinearity. We

show that multiplying an encoding of zero (at the κth level) by pzt (mod q) yields a small element,

while multiplying an encoding of a non-zero by pzt (mod q) yields a large element. Hence we can

distinguish zero from non-zero, and by subtraction we can distinguish two encodings of the same

element from encodings of two different elements.

4
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Our schemes are somewhat analogous to graded algebras, hence we sometimes call them

graded encoding schemes. Our schemes are quite flexible, and for example can be modified to

support the analog of asymmetric maps by using several different z’s. On the other hand, other

variants such as composite-order groups turn out to be insecure with our encodings (at least when

implemented in a straightforward manner).

Other related work. Building upon our construction Coron, Lepoint and Tibouchi [CLT13]

provide an alternate construction of multilinear maps that works over the integers instead of ideal

lattices, similar to the fully homomorphic encryption scheme of [vDGHV10]. The security of these

constructions also relies on new assumptions.

1.3 Survey of Applications

Albeit noisy, our multilinear maps radically enhance our tool set and open a floodgate of appli-

cations. For example, our multilinear maps provide as a special case a new candidate for bilinear

maps that can be used to compile a countless number of applications based on bilinear maps to ones

based on lattice assumptions. Next we will give examples of much more fascinating applications

resulting from our multilinear maps.

• One-round multi-party key-exchange. Diffie and Hellman in their seminal paper [DH76]

provided the first construction of a one-round two-party key-exchange protocol which was

then generalized to the three party setting by Joux [Jou00] using Weil and Tate pairings.

Boneh and Silverberg [BS03] showed how this result could be extended to get a one-round

n-party key-exchange protocol if multilinear maps existed. Our approximate multilinear

maps suffice for instantiating this construction giving the first realization of this primitive.

In Chapter 6 we provide details on this construction.

• Attribute Based Encryption. Enabling encryption by arbitrary parties motivated the in-

vention of public key encryption [DH76, RSA78]. However, enabling fine-grained decryp-

tion capabilities has remained an elusive goal [Sha85, SW05, GPSW06]. Shamir [Sha85]

5
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proposed the problem of non-interactively associating identities with encrypted data, and

later Sahai and Waters [SW05] asked if an encrypter at the time of encryption can non-

interactively embed any arbitrary decryption policy into his ciphertext. So far, the real-

izations of this primitive, referred to as attribute based encryption (ABE), were limited to

access-control policies expressed by formulas. Using our multilinear maps, we [GGH+13c]

have positively resolved this problem and given a construction that allows for arbitrary

access-control policies.

Concurrently and independently Gorbunov, Vaikuntanathan, and Wee [GVW13] also achieve

ABE for circuits. One nice feature of their result is that they reduce security to the Learning

with Errors (LWE) problem.

• Witness Encryption. Encryption in all its myriad flavors has always been imagined with

some known recipient in mind. But, what if the intended recipient of the message is not

known and may never be known? For example, consider the task of encrypting to some-

one who knows a solution to a crossword puzzle that appeared in the The New York Times.

Or, in general, a solution to some NP search problem which he might know or might ac-

quire over a period of time. Very recently, we [GGSW13] proposed the concept of wit-

ness encryption which captures this intuition and realized it based on our noisy multilinear

maps. Furthermore, witness encryption is also a surprisingly useful tool for building other

cryptographic schemes. Indeed, [GGSW13] show that witness encryption gives intrigu-

ing new solutions with novel properties for cryptographic primitives including public key

encryption [DH76, GM84], Identity-Based Encryption [Sha85, BF01] and Attribute-Based

Encryption [SW05].

Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich [GKP+13] use (a variant of) the

witness encryption scheme for constructing a variant of attribute-based encryption scheme

for polynomial-time Turing machines, where the sizes of function keys depend only on the

size of the Turing machine (rather than its runtime). Furthermore in these constructions,

the decryption algorithm has an input-specific runtime rather than worst-case runtime (at

the price of revealing this runtime). They also provide analogous results for a single-key
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functional encryption scheme [GKP+12] and a reusable garbled circuits [Yao82, GKP+12].

• Functional Encryption. Recently, using our multilinear maps we [GGH+13b] have con-

structed a functional encryption scheme for any family of polynomial sized functions with-

standing arbitrary collusions of secret-key holders. These construction combine non-interactively

computing on encrypted data with its access management [BSW11, O’N10], enabling a de-

crypter to learn only a specific function of the encrypted message. We use a simulation-

based notion of security, but bypass the known impossibility results [BSW11, AGVW12] by

allowing only a single challenge ciphertext and providing only selective security. We refer

the reader to [GGH+13b] for more details.

• Obfuscation. Although strong evidence suggesting that obfuscating in its full generality is

impossible exists [BGI+01, GK05], the problem of realizing it under reasonable restrictions

on the model is kown to be open. Using our multilinear maps, we [GGH+13b] provide a con-

struction for Best-Possible Obfuscation [GR07] of NC1 circuits. This is the first candidate

obfuscation method for a large and natural class of circuits.

1.4 Organization

We define formally our notion of a “approximate” multilinear maps which we call graded encod-

ing schemes (termed after the notion of graded algebra), as well an abstract notion of our main

hardness assumption (which is a multilinear analog of DDH) in Chapter 2. In Chapter 2 we restrict

ourselves to the “symmetric setting” and then later in Appendix A we extend our definition to the

“asymmetric” setting.

Then in Chapter 3 we provide some background on number theory and lattices necessary for

understanding our construction and the security analysis provided in Chapters 4 and 5 respectively.

We provide details on the cryptanalysis tools used and developed in this work (needed for Chap-

ter 5) in Appendix B.

Finally, as an example application of our multilinear maps we provide a construction of one-

7
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round multi-party key-exchange protocol in Chapter 6. For other applications we refer the reader

to papers cited in Section 1.3.
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CHAPTER 2

Multilinear Maps and Graded Encoding Systems

In this chapter we define formally our notion of a “approximate” multilinear maps, which we call

graded encoding schemes (termed after the notion of graded algebra).

To make the analogy and differences from multilinear maps more explicit, we begin by recall-

ing the notion of cryptographic multilinear maps of Boneh and Silverberg [BS03] (using a slightly

different syntax).

2.1 Cryptographic Multilinear Maps

Below we define cryptographic multilinear maps.

Definition 2.1 (Multilinear Map). For κ + 1 cyclic groups G1, . . . , Gκ, GT (written additively) of

the same order p, an κ-multilinear map e : G1 × · · · ×Gκ → GT has the following properties:

1. For elements {gi ∈ Gi}i=1,...,κ, index i ∈ [κ] and integer α ∈ Zp, it holds that

e(g1, . . . , α · gi, . . . , gκ) = α · e(g1, . . . , gκ).
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2. The map e is non-degenerate in the following sense: if the elements {gi ∈ Gi}i=1,...,κ, are all

generators of their respective groups, then e(g1, . . . , gκ) is a generator of GT .

Boneh and Silverberg considered in [BS03] only the symmetric case G1 = · · · = Gκ. The

asymmetric case with different Gi’s (as defined above) has also been considered in the literature,

e.g., by Rothblum in [Rot13].

2.1.1 Efficient Procedures

To be useful for cryptographic applications, we need to be able to manipulate (representations of)

elements in these groups efficiently, and at the same time we need some other manipulations to

be computationally hard. Specifically, a cryptographic multilinear map scheme consists of effi-

cient procedures for instance-generation, element-encoding validation, group-operation and nega-

tion, and multilinear map, MMP = (InstGen,EncTest, add, neg,map). These procedures are

described below.

Instance Generation. A randomized algorithm InstGen that takes the security parameter λ and the

multi-linearity parameter κ (both in unary), and outputs (G1, . . . , GT , p, e, g1, . . . , gκ). Here

the Gi’s and GT describe the groups, p ∈ Z is their order, e : G1×· · ·×Gκ → GT describes

an κ-multilinear map as above, and gi ∈ {0, 1}∗ for i = 1, . . . , κ encode generators in these

groups. To shorten some of the notations below, we denote params = (G1, . . . , GT , p, e).

Element Encoding. Given the instance params from above, an index i ∈ [κ], and a string x ∈

{0, 1}∗, EncTest(params, i, x) decides if x encodes an element in Gi (and of course the gi’s

output by the instance-generator are all valid encodings). Similarly EncTest(params, κ +

1, x) efficiently recognizes description of elements in GT .

It is usually assumed that elements have unique representation, namely for every i there are

only p different strings representing elements in Gi. Below we therefore identify elements

with their description, e.g. referring to “x ∈ Gi” rather than “x is a description of an element

in Gi”.

10
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Group Operation. Given x, y ∈ Gi, add(params, i, x, y) computes x+y ∈ Gi and neg(params, i, x)

computes −x ∈ Gi. This implies also that for any α ∈ Zp we can efficiently compute

α · x ∈ Gi.

Multilinear Map. For {xi ∈ Gi}i=1,...,κ, map(params, x1, . . . , xκ) computes e(x1, . . . , xn) ∈ GT .

Another property, which was used by Papamanthou et al. [PTT10], is compactness, which

means that the size of elements in the groups (as output by the instance generator) is independent

of κ. Looking ahead we note that our multilinear maps do not satisfy this requirement, and are

therefore unsuitable for the application in [PTT10]. For the same reasons we find our multilinear

maps unsuitable for application of [Rot13].

2.1.2 Hardness Assumptions

For the multilinear map to be cryptographically useful, at least the discrete logarithm must be hard

in the respective groups, and we usually also need the multilinear-DDH to be hard.

Multilinear Discrete-log (MDL). The Multilinear Discrete-Log problem is hard for a scheme

MMP , if for all κ > 1, all i ∈ [κ], and all probabilistic polynomial time algorithms, the discrete-

logarithm advantage of A,

AdvDlogMMP,A,κ(λ)
def
= Pr

[
A(params, i, gi, α · gi) = α : (params, g1, . . . , gl)← InstGen(1λ, 1κ), α← Zp

]
,

is negligible in λ

Multilinear DDH (MDDH). For a symmetric schemeMMP (with G1 = G2 = · · · ), the Mul-

tilinear Decision-Diffie-Hellman problem is hard forMMP if for any κ and every probabilistic

polynomial time algorithms A, the advantage of A in distinguishing between the following two

distributions is negligible in λ:

(params, g, α0g, α1g, . . . , ακg, (
κ∏
i=0

αi) · e(g . . . , g))

and (params, g, α0g, α1g, . . . , ακg, α · e(g, . . . , g))

11



www.manaraa.com

where (params, g)← InstGen(1λ, 1κ) and α, α0, α1, . . . , ακ are uniformly random in Zp.

2.2 Graded Encoding Schemes

The starting point for our new notion is viewing group elements in multilinear-map schemes as

just a convenient mechanism of encoding the exponent: Typical applications of bilinear (or more

generally the envisioned multilinear) maps use α · gi as an “obfuscated encoding” of the “plaintext

integer” α ∈ Zp. This encoding supports limited homomorphism (i.e., linear operations and a

limited number of multiplications) but no more.

In our setting we retain this concept of a somewhat homomorphic encoding, and have an alge-

braic ring (or field) R playing the role of the exponent space Zp. However we will dispose of the

algebraic groups, replacing them with “unstructured” sets of encodings of ring elements.

Perhaps the biggest difference between our setting and the setting of cryptographic multilinear

maps, is that our encodings are randomized, which means that the same ring-element can be en-

coded in many different ways. In our notion we do not even insist that the “plaintext version” of a

ring element has a unique representation. This means that checking if two strings encode the same

element may not be trivial, indeed our constructions rely heavily on this check being feasible for

some encodings and not feasible for others.

Another important difference is that our system lets us multiply not only batches of κ encod-

ings at the time, but in fact any subset of encodings. This stands in stark contrast to the sharp

threshold in multi-linear maps, where you can multiply exactly κ encodings, no more and no less.

A consequence of the ability to multiply any number of encodings is that we no longer have a

single target group, instead we have a different “target group” for any number of multiplicands.

This yields a richer structure, roughly analogous to graded algebra.

In its simplest form (analogous to symmetric maps with a single source group), we have levels

of encodings: At level zero we have the “plaintext” ring elements α ∈ R themselves, level one

corresponds to α ·g in the source group, and level-i corresponds to a product of i level-1 encodings

(so level-κ corresponds to the target group from multilinear maps).

12
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For the sake of simplicity, in this section we will restrict to the case of symmetric multilinear

maps and provide the extensions of these definitions to the asymmetric setting in Section A.

Definition 2.2 (κ-Graded Encoding System). A κ-Graded Encoding System consists of a ring R

and a system of sets S = {S(α)
i ⊂ {0, 1}∗ : α ∈ R, 0 ≤ i ≤ κ, }, with the following properties:

1. For every fixed index i, the sets {S(α)
i : α ∈ R} are disjoint (hence they form a partition of

Si
def
=
⋃
α S

(α)
v ).

2. There is an associative binary operation ‘+’ and a self-inverse unary operation ‘−’ (on

{0, 1}∗) such that for every α1, α2 ∈ R, every index i ≤ κ, and every u1 ∈ S
(α1)
i and

u2 ∈ S(α2)
i , it holds that

u1 + u2 ∈ S(α1+α2)
i and − u1 ∈ S(−α1)

i

where α1 + α2 and −α1 are addition and negation in R.

3. There is an associative binary operation ‘×’ (on {0, 1}∗) such that for every α1, α2 ∈ R,

every i1, i2 with i1 + i2 ≤ κ, and every u1 ∈ S(α1)
i1

and u2 ∈ S(α2)
i2

, it holds that u1 × u2 ∈

S
(α1·α2)
i1+i2

. Here α1 · α2 is multiplication in R, and i1 + i2 is integer addition.

Clearly, Definition 2.2 implies that if we have a collection of n encodings uj ∈ S
(αj)
ij

, j =

1, 2 . . . , n, then as long as
∑

j ij ≤ κ we get u1 × · · · × un ∈ S
(
∏
j αj)

i1+···+in .

2.2.1 Efficient Procedures, the Dream Version

To be useful, we need efficient procedures for manipulating encodings well as as hard computa-

tional tasks. To ease the exposition, we first describe a “dream version” of the efficient procedures

(which we do not know how to realize), and then explain how to modify them to deal with techni-

calities that arise from our use of lattices in the realization.

Instance Generation. The randomized InstGen(1λ, 1κ) takes as inputs the parameters λ, κ, and

outputs (params,pzt), where params is a description of a κ-Graded Encoding System as

above, and pzt is a zero-test parameter for level κ (see below).
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Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S
(α)
0 for a

nearly uniform element α ∈R R. (Note that we require that the “plaintext” α ∈ R is nearly

uniform, but not that the encoding a is uniform in S(α)
0 .)

Encoding. The (possibly randomized) enc(params, i, a) takes a “level-zero” encoding a ∈ S
(α)
0

for some α ∈ R and index i ≤ κ, and outputs the “level-i” encoding u ∈ S(α)
i for the same

α.

Addition and negation. Given params and two encodings relative to the same index, u1 ∈ S(α1)
i

and u2 ∈ S(α2)
i , we have add(params, i, u1, u2) = u1+u2 ∈ S(α1+α2)

i , and neg(params, i, u1) =

−u1 ∈ S(−α1)
i .

Multiplication. For u1 ∈ S(α1)
i1

, u2 ∈ S(α2)
i2

such that i1+i2 ≤ κ, we have mul(params, i1, u1, i2, u2) =

u1 × u2 ∈ S(α1·α2)
i1+i2

.

Zero-test. The procedure isZero(params, u) output 1 if u ∈ S
(0)
κ and 0 otherwise. Note that in

conjunction with the subtraction procedure, this lets us test if u1, u2 ∈ Sκ encode the same

element α ∈ R.

Extraction. This procedure extracts a “canonical” and “random” representation of ring elements

from their level-κ encoding. Namely ext(params,pzt, u) outputs (say) s ∈ {0, 1}λ, such

that:

(a) For any α ∈ R and two u1, u2 ∈ S(α)
κ , ext(params,pzt, u1) = ext(params,pzt, u2),

(b) The distribution {ext(params,pzt, u) : α ∈R R, u ∈ S
(α)
κ } is nearly uniform over

{0, 1}λ.

2.2.2 Efficient Procedures, the Real-Life Version

Our realization of the procedures above over ideal lattices uses noisy encodings, where the noise

increases with every operation and correctness is only ensured as long as it does not increase too

much. We therefore modify the procedures above, letting them take as input (and produce as

output) also a bound on the noise magnitude of the encoding in question. The procedures are
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allowed to abort if the bound is too high (relative to some maximum value which is part of the

instance description params). Also, they provide no correctness guarantees if the bound on their

input is “invalid.” (When B is a noise-bound for some encoding u, we say that it is “valid” if it is

at least as large as the bound produced by the procedure that produced u itself, and moreover any

encoding that was used by that procedure (if any) also came with a valid noise bound.) Of course

we also require that these procedure do not always abort, i.e. they should support whatever set of

operations that the application calls for, before the noise becomes too large. Finally, we also relax

the requirements on the zero-test and the extraction routines. Some more details are described

next:

Zero-test. We sometime allow false positives for this procedure, but not false negatives. Namely,

isZero(params,pzt, u) = 1 for every u ∈ S(0)
κ , but we may have isZero(params,pzt, u) = 1

also for some u /∈ S
(0)
κ . The weakest functionality requirement that we make is that for a

uniform random choice of α ∈R R, we have

Pr
α∈RR

[
∃ u ∈ S(α)

κ s.t isZero(params,pzt, u) = 1
]

= negl(λ). (2.1)

Additional requirements are considered security features (that a scheme may or may not

possess), and are discussed later in this section.

Extraction. We replace1 the properties (a)-(b) from above dream version by the weaker require-

ments:

(a′) For a randomly chosen a ← samp(params), if we run the encoding algorithm twice to

encode a at level κ and then extract from both copies then we get:

Pr

 ext(params,pzt, u1)

= ext(params,pzt, u2)
:

a← samp(params)

u1 ← enc(params, κ, a)

u2 ← enc(params, κ, a)

 ≥ 1− negl(λ).

(b′) The distribution {ext(params,pzt, u) : a ← samp(params), u ← enc(params, κ, a)} is

nearly uniform over {0, 1}λ.
1Our construction from Section 4 does not support full canonicalization. Instead, we settle for ext(params,pzt, u)

that has a good chance of producing the same output when applied to different encoding of the same elements.
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We typically need these two conditions to hold even if the noise bound that the encoding

routine takes as input is larger than the one output by samp (upto some maximum value).

2.2.3 Hardness Assumptions

Our hardness assumptions are modeled after the discrete-logarithm and DDH assumptions in mul-

tilinear groups. For example, the most direct analog of the discrete-logarithm problem is trying to

obtain a level-zero encoding a ∈ S
(α)
0 for α ∈ R from an encoding relative to some other index

i > 0.

The analog of DDH in our case roughly says that given κ + 1 level-one encoding of random

elements it should be infeasible to generate a level-κ encoding of their product, or even to dis-

tinguish it from random. To formalize the assumption we should specify how to generate level-κ

encodings of the “the right product” and of a random element. One way to formalize it is by the

following process. (Below we suppress the noise bounds for readability):

1. (params,pzt)← InstGen(1λ, 1κ)

2. For i = 1, . . . , κ+ 1:

3. Choose ai ← samp(params) // level-0 encoding of random αi ∈R R

4. Set ui ← enc(params, 1, ai) // level-1 encoding of the αi’s

5. Set ã =
∏κ+1

i=1 ai // level-0 encoding of the product

6. Choose â← samp(params) // level-0 encoding of a random element

7. Set ũ← enc(params, κ, ã) // level-κ encoding of the product

8. Set û← enc(params, κ, â) // level-κ encoding of random

(We note that with the noise bound, it may be important that the encoding routines for both

ã and â get as input the same bound, i.e., the largest of the bounds for ã and â.) The GDDH

distinguisher gets all the level-one ui’s and either ũ (encoding the right product) or û (encoding a

random element), and it needs to decide which is the case. In other words, the GDDH assump-

tion says that for any setting of the parameters, the following two distributions, defined over the
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experiment above, are computationally indistinguishable:

DGDDH = {(params,pzt, {ui}i, ũ)} and DRAND = {(params,pzt, {ui}i, û)}.

Zero-test security. In some settings we may be concerned with adversaries that can generate

encodings in a malicious way and submit them to the zero-test procedure. In such settings, the

statistical property from Equation (2.1) is not sufficient, instead we would like the zero-test to

accept only encoding of zero at the right level. This can be statistical (i.e. no false positive exist)

or computational (i.e. it is hard to find them).

Definition 2.3. A graded-encoding system enjoys statistical zero-test security if the only strings

that pass the zero-test are encodings of zero, except with a negligible probability over the instance

generation. That is, for every κ:

Pr
params,pzt

[∃ u /∈ S(0)
κ s.t. isZero(params,pzt, u) = 1] ≤ negligible(λ),

where the probability is taken over (params,pzt)← InstGen(1λ, 1κ). And we say that the graded-

encoding system enjoys computational zero-test security if for every adversary A and parameters

as above:

Pr
(params,pzt)←InstGen(1λ,1κ)
u←A(params,pzt)

[
u /∈ S(0)

κ but isZero(params,pzt, u) = 1
]
≤ negligible(λ).
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CHAPTER 3

Preliminaries

We denote set of complex number by C, real numbers by R, the rationals by Q and the integers by

Z. For a positive integer n, [n] denotes the set {1, . . . , n}. We extend any real function f(·) to a

countable set A by defining f(A) =
∑

x∈A f(x).

By convention, vectors are assumed to be in column form and are written using bold lower-

case letters, e.g. x. The ith component of x will be denoted by xi. We will use xT to denotes

the transpose of x. For a vector x in Rn or Cn and p ∈ [1,∞], we define the `p norm as ‖x‖p =(∑
i∈[n] |xi|p

)1/p

where p < ∞, and ‖x‖∞ = maxi∈[n] |xi| where p = ∞. Whenever p is not

specified, ‖x‖ is assumed to represent the `2 norm (also referred to as the Euclidean norm).

Matrices are written as bold capital letters, e.g. X , and the ith column vector of a matrix X

is denoted xi. The length of a matrix is the norm of its longest column: ‖X‖ = maxi ‖xi‖.

For notational convenience, we sometimes view a matrix as simply the set of its column vectors.

Finally we will denote the transpose and the inverse (if it exists) of a matrix X with XT and X−1

respectively.
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The natural security parameter throughout the thesis is λ, and all other quantities are implicitly

assumed to be functions of λ. We use standard big-O notation to classify the growth of functions,

and say that f(n) = Õ(g(n)) if f(n) = O(g(n) · logc n) for some fixed constant c. We let poly(λ)

denote an unspecified function f(λ) = O(λc) for some constant c. A negligible function, denoted

generically by negl(λ), is an f(λ) such that f(n) = o(n−c) for every fixed constant c. We say that

a probability (or fraction) is overwhelming if it is 1− negl(n).

The statistical distance between two distributions X and Y over a domain D is defined to be
1
2

∑
d∈D |Pr[X = d] − Pr[Y = d]. We say that two distributions (formally, two ensembles of

distributions indexed by λ) are statistically close if their statistical distance is negligible in λ.

Two ensembles of distributions {Xλ} and {Yλ} are computationally indistinguishable if for

every probabilistic poly-time machine A, |Pr[A(1λ, Xλ) = 1] − Pr[A(1λ, Yλ) = 1]| is negligible

in λ. The definition is extended to non-uniform families of poly-sized circuits in the standard way.

3.1 Lattices

A lattice Λ ⊂ Rn is an additive discrete sub-group of Rn. Let B = {b1, . . . , bn} ⊂ Rn consist of

n linearly independent vectors. The n-dimensional full-rank lattice Λ generated by the basis B is:

Λ = L(B) = {Bz =
n∑
i=1

zibi : z ∈ Zn}.

Also the fundamental parallelepiped of B, denoted as P(B) is defined as

P(B) = {Bx : x ∈ [0, 1)n}.

The minimum distance λ1(Λ) of a lattice Λ is the length (in the Euclidean `2 norm, unless

otherwise indicated) of its shortest nonzero vector: λ1(Λ) = minx6=0,x∈Λ ‖x‖. More generally, the

ith successive minimum λi(Λ) is the smallest radius r such that Λ contains i linearly independent

vectors of norm at most r. We write λ∞1 to denote the minimum distance measured in the `∞ norm

(which as mentioned earlier, is defined as ‖x‖∞ = max |xi|).
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For lattices Λ′ ⊆ Λ, the quotient group Λ/Λ′ (also written as Λ mod Λ′) is well-defined as the

additive group of distinct cosets v+ Λ′ for v ∈ Λ, with addition of cosets defined in the usual way.

The dual lattice of Λ, denoted Λ∗, is defined to be Λ∗ = {x ∈ Rn : ∀v ∈ Λ, 〈x,v〉 ∈ Z}. By

symmetry, it can be seen that (Λ∗)∗ = Λ. If B is a basis of Λ, then we have that B∗ = (B−1)T is

in fact1 a basis of Λ∗.

3.2 Gaussians on Lattices

Review of Gaussian measure over lattices presented here follows the development by prior works [Reg04,

AR05, MR07, GPV08, AGHS12]. For any real s > 0, define the (spherical) Gaussian function

ρs : Rn → (0, 1] with2 parameter s as:

∀x ∈ Rn, ρs(x) = exp(−π〈x,x〉/s2) = exp(−π‖x‖2/s2).

For any real s > 0, and n-dimensional lattice Λ, define the (spherical) discrete Gaussian

distribution over Λ as:

∀x ∈ Λ, DΛ,s(x) =
ρs(x)

ρs(Λ)
.

This generalizes to ellipsoid Gaussians, where the different coordinates are jointly Gaussian

but not independent, where we replace the parameter s2 ∈ R by a covariance matrix in Rn×n

(which must be symmetric and positive definite3). For any rank-n matrix S ∈ Rm×n, the ellipsoid

Gaussian function on Rn with parameter S is defined by

∀x ∈ Rn, ρS(x) = exp
(
− π xT (STS)−1x

)
.

Clearly this function only depends on STS and not on the particular choice of S. Note that for

any rank-n matrix S we have that the symmetric matrix STS is positive semidefinite, because

zTSTSz = zTST (zTST )T = 〈zTST , (zTST )〉 = ‖(zTST )‖2

1This hold for the special case when B is a nonsingular square matrix. In general B∗ = B(BTB)−1.
2The Gaussian function can be defined more generally as being centered around a specific vector c instead of 0 as

done here. The simpler definition considered here suffices for our purposes.
3A symmetric matrix is a square matrix that is equal to its transpose. A symmetric n× n real matrix M is said to

be positive definite if zTMz is positive, for any non-zero column vector z of n real numbers.
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It is also clear that the spherical case can be obtained by setting S = sIn, with In the n-by-n iden-

tity matrix. Normalizing, ellipsoid discrete Gaussian distribution over lattice Λ with parameter S

is

∀ x ∈ Λ, DΛ,S(x) =
ρS(x)

ρS(Λ)
.

Micciancio and Regev [MR07] introduced a lattice quantity called the smoothing parameter,

and related it other lattice parameters.

Definition 3.1 (Smoothing Parameter, [MR07, Definition 3.1]). For an n-dimensional lattice Λ,

and positive real ε > 0, we define its smoothing parameter denoted ηε(Λ), to be the smallest s such

that ρ1/s(Λ
∗ \ {0}) ≤ ε.

Intuitively, for a small enough ε, the number ηε(Λ) is sufficiently larger than a fundamental

parallelepiped of Λ’ so that sampling from the corresponding Gaussian “wipes out the internal

structure” of Λ. The following useful lemmas capture this intuition. Specifically, Lemma 3.3 and

Corollary 3.4 formally provide this claim where the bounds on ηε(Λ) are specified by Lemma 3.2.

Finally Lemma 3.5 provides an upper bound on the length of vectors sampled from a Gaussian.

Lemma 3.2 ([MR07, Lemmas 3.2, 3.3]). For any n-dimensional lattice Λ, we have that ηε(Λ) ≤
√
n

λ1(Λ∗)
where ε = 2−n, and ηε(Λ) ≤

√
ln(2n(1+1/ε))

π
· λn(Λ) for all 0 < ε.

The following lemma explains the name “smoothing parameter.”

Lemma 3.3 ([MR07, Lemma 4.1] and [Reg09, Claim 3.8]). For any lattice Λ, ε > 0, s ≥ ηε(Λ),

and c ∈ Rn, the statistical distance between Ds + c mod Λ and the uniform distribution modulo

Λ is at most ε/2. Alternatively, we have that ρs(Λ + c) ∈
[

1−ε
1+ε

, 1
]
ρs(Λ).

Corollary 3.4 ([GPV08, Corollary 2.8]). Let Λ,Λ′ be n-dimensional lattices, with Λ′ ⊆ Λ. Then

for any ε ∈ (0, 1), any s ≥ ηε(Λ
′), the distribution of DΛ,s mod Λ′ is within a statistical distance

at most 2ε of uniform over Λ mod Λ′.

Lemma 3.5 ([MR07, Lemma 4.4] and [BF11b, Proposition 4.7]). For any n-dimensional lattice

Λ, and s ≥ ηε(Λ) for some negligible ε, then for any constant δ > 0 we have

Pr
x←DΛ,s

[
(1− δ)s

√
n

2π
≤ ‖x‖ ≤ (1 + δ)s

√
n

2π

]
≥ 1− negl(n).
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Next we present a generalization of Lemma 3.5 to the setting of ellipsoidal Gaussians [AGHS12].

Specifically Lemma 3.6 claims that the size of vectors drawn from DΛ,S is roughly bounded by

the largest singular value of S. Recall that the largest and least singular values of a full rank

matrix S ∈ Rm×n are defined as σ1(S) = sup(US) and σn(S) = inf(US), respectively, where

US = {‖Su‖ : u ∈ Rn, ‖u‖ = 1}.

Lemma 3.6 ([AGHS12, Lemma 3]). For a rank-n lattice Λ, constant 0 < ε < 1 and matrix S

such that σn(S) ≥ ηε(L), we have:

Pr
v←DΛ,S

(
‖v‖ ≥ σ1(S)

√
n
)
≤ 1 + ε

1− ε
· 2−n.

Sum of Discrete Gaussians A recent work [AGHS12] considered the process that begins by

choosing “once and for all” m points in a lattice Λ, drawn independently from a “wide discrete

Gaussian” xi ← DΛ,s. Once the xi’s are fixed, they are arranged as the rows of an m-by-n matrix

X = (x1|x2| . . . |xm)T , and we consider the distribution EX,s′ , induced by choosing an integer

vector v from a discrete spherical Gaussian over Zm with parameter s′ and outputting y = XTv,

EX,s′
def
= {XTv : v ← DZm,s′}.

[AGHS12] proved that with high probability over the choice of X , the distribution EX,s′ is statis-

tically close to the ellipsoid Gaussian DΛ,s′X .

Theorem 3.7 ([AGHS12, Theorem 3]). Let Λ be a full-rank lattice Λ ⊂ Rn and B a matrix whose

rows form a basis of Λ, and denote χ = σ1(B)/σn(B). Also let ε be negligible in n, and let

m, s, s′ be parameters such that s ≥ ηε(Zn), m ≥ 10n log(8(mn)1.5sχ) and s′ ≥ 4mnχ ln(1/ε).

Then, when choosing the rows of an m-by-n matrix X from the spherical Gaussian over Λ,

X ← (DΛ,s)
m, we have with all but probability 2−O(m) over the choice of X , that the statistical

distance between EX,s′ and the ellipsoid Gaussian DΛ,s′X is bounded by 2ε.

Lemma 3.8 ([AGHS12, Lemma 8]). There exists a universal constant K > 1 such that for all

m ≥ 2n, ε > 0 and every n-dimensional real lattice Λ ⊂ Rn, the following holds: Choosing the
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rows of an m-by-n matrix X independently at random from a spherical discrete Gaussian on Λ

with parameter s > 2Kηε(Λ), namely X ← (DΛ,s)
m, we have

Pr
[
s
√

2πm/K < σn(X) ≤ σ1(X) < sK
√

2πm
]
> 1− (4mε+O(exp(−m/K))).

3.3 Algebraic Number Theory Background

Algebraic number theory is the study of number fields. Here we review the background essential for

understanding our encoding scheme. We consider the special case of cyclotomic number fields as

an special example of particular interest. Much of our description here follows [LPR10]. We refer

the reader to [Ste04, Wes99, Oss08] for more details. Additional background will be necessary

for our study of cryptanalysis and is recalled later in Appendix B.1.

3.3.1 Number Fields and Ring of Integers

We start by recalling some elementary definitions.

Definition 3.9 (Algebraic Number and Algebraic Integer). We say that ζ ∈ C is an algebraic

number if it is a root of a polynomial f(x) ∈ Q[x]. Furthermore, we say that that ζ is an algebraic

integer if additionally f(x) is monic (a polynomial whose leading coefficient is 1) polynomial in

Z[x].

Definition 3.10 (Minimal Polynomial). The minimal polynomial of ζ is the monic polynomial

f(x) ∈ Q[x] of least positive degree such that f(ζ) = 0.

The conjugates of ζ are defined by all the roots of its minimal polynomial.

Proposition 3.11 ([Ste04, Lemma 5.1.3 and Proposition 5.1.5] ). The set of all algebraic integers

form a ring, i.e., the sum and product of two algebraic integers is again an algebraic integer. If ζ

is an algebraic integer, then the minimal polynomial of ζ is in Z[x].

Definition 3.12 (Number Field and Ring of Integers). A number field is a field extensionK = Q(ζ)

obtained by adjoining an algebraic number ζ to the field of rationals Q. The ring of integers of a
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number field K is the ring

OK = {x ∈ K : x is an algebraic integer.}

Let the minimal polynomial f(x) of ζ have degree n. Then because f(ζ) = 0, there is a natural

isomorphism between Q[x] mod f(x) and K, given by x 7→ ζ , and the number field K can be

seen as an n-dimensional vector space overQ with basis {1, ζ, . . . , ζn−1}. This is called the power

basis of K.

The case of Cyclotomic Number Fields. Let ζm = e2π
√
−1/m ∈ C denote a primitive m-th root

of unity. (Recall that an mth root of unity is said to be a primitive root if it is not a kth root for

some 0 < k < m.)

Definition 3.13 (Cyclotomic Polynomial). The m-th cyclotomic polynomial, denote by Φm(x), is

defined as the product

Φm(x) =
∏
k∈Z∗m

(x− ζkm).

Observe that the values ζk run over all the primitive mth roots of unity in C, thus Φm(x) has

degree n = ϕ(m), where ϕ(m) denotes the Euler’s totient or phi function. Recall that if m is a

positive integer, then ϕ(m) is the number of integers in the set {1, 2, . . . ,m} that are relatively

prime to m.

It is easy to see that Φm(x) is monic. It is also known (a nontrivial result due to Gauss) that

Φm(x) is in Z[x] and is irreducible over Q. Therefore ζm is an algebraic integer with the minimal

polynomial Φm(x).

The cyclotomic polynomial Φm(x) may be computed by (exactly) dividing xn − 1 by the

cyclotomic polynomials of the proper divisors of n previously computed recursively (setting,

Φ1(x) = x− 1) by the same method:

Φm(x) =
xm − 1∏
d|m
d<m

Φd(x)
.
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Two useful facts about cyclotomic polynomials are that Φm(x) = xm−1
x−1

= xm−1 + . . .+ x+ 1 for

prime m, and Φm(x) = Φm0(xm/m0) where m0 is the radical of m, i.e., the product of all primes

diving m. For instance, Φ8(c) = x4 + 1 and Φ9(x) = x6 + x3 + 1. We will be most interested

in the case when m ≥ 2 is a power of 2 in which case Φm(x) = xm/2 + 1. (However, not all

cyclotomic polynomials have 0-1, or even small coefficients: e.g., Φ6(x) = x2 − x + 1, Φ3·5·7 has

a −2 coefficient, and Φ3·5·7·11·13(x) has coefficients with magnitudes as large as 22.)

Definition 3.14. The mth cyclotomic field Q(ζm) (with m > 2) is obtained by adjoining ζm to Q.

Proposition 3.15 ([Jan96, p 48, Proposition 4.3]). The ring of integers in Q(ζm) is Z(ζm). This

ring Z(ζm) is called the cyclotomic ring.

3.3.2 Embeddings and Geometry

Recall that a number field K = Q(ζ) is isomorphic to Q[x]/f(x) where f(x) is the minimal

polynomial of ζ . The degree of K defined to be the value [K : Q], is same as [Ste04, p 28] the

degree of the polynomial f(x). (Recall that if K ⊂ L are number fields, we let [L : K] denote the

dimension of L viewed as a K-vector space.)

Canonical Embedding. A number fieldK = Q(ζ) of degree n has [Wes99, p 9, Proposition 2.1]

exactly n field homomorphisms σi = K ↪→ C that fix every element of Q. Concretely, these

embeddings map ζ to each of its conjugates; it can be verified that these are the only field ho-

momorphisms from K to C because ζ’s conjugates are the only roots of ζ’s minimal polynomial

f(x). An embedding whose image lies in R (corresponding to a real root of f(x)) is called a real

embedding; otherwise (for a complex root of f(x)) it is called a complex embedding. Because

complex roots of f(x) come in conjugate pairs, so too do the complex embeddings. The number

of real embeddings is denoted s1 and the number of pairs of complex embeddings is denoted by

s2, so we have n = s1 + 2s2. The pair (s1, s2) is called the signature of K. By convention, we let

{σj}j∈[s1] be the real embeddings, and order the complex embeddings so that σs1+s2+j = σs1+j for
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j ∈ [s2]. The canonical embedding σ : K → Rs1 × C2s2 is defined as

σ(x) = (σ1(x), . . . , σn(x)).

The canonical embedding σ is a field homomorphism from K to Rs1 × C2s2 , where multipli-

cation and addition in Rs1 × C2s2 are component-wise (since σ is a ring homomorphism). Due to

the pairing of the complex embeddings, σ maps into the following space H ⊆ Rs1 × C2s2 ⊂ Cn:

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 : xs1+s2+j = xs1+j,∀j ∈ [s2]}.

By identifying elements of K with their canonical embeddings in H , we can speak of geo-

metric norms on K. Specifically, we define the `p norm of x, denoted as ‖x‖canp as ‖σ(x)‖p =(∑
i∈[n] |σi(x)|p

)p
for p < ∞, and is maxi∈[n] |σi(x)| for p = ∞. (As always we assume the `2

norm when p is omitted.)

The (field) norm of an element a ∈ K is defined as N(a) = NK/Q(a) =
∏

i∈[n] σi(a).4 Note

that the [Wes99, p 43, proof of Lemma 3.2] norm of an algebraic integer is in Z.

Coefficient Embedding. There is also a coefficient embedding τ : K → Qn. As mentioned

earlier, since f(ζ) = 0, there is an isomorphism between Q[x] mod f(x) and K given by

x → ζ . So, K can be represented as a n-dimensional vector space over Q using the power

basis {1, ζ, . . . , ζn−1}, and τ maps an element of K to its associated coefficient vector. When

identifying an element a ∈ K as a coefficient vector, i.e., τ(a) we denote it as a boldface vector a.

We define the multiplicative expansion factor γMult to denote (as in [Gen09a, p. 71]) the maximal

value of ‖a×b‖‖a‖·‖b‖ for any a, b ∈ K. (See [LM06] for a different definition of the expansion factor

for multiplication.) The dependence of γMult value on the underlying field K is understood.

Next we will argue (also see [Gen09a, Lemma 7.4.3] and [GH10, Section 2.2]) that for the field

K = Q[x]/(xn + 1), γMult can be upper bounded by
√
n.

4More generally, the relative norm NK/L(a) of an element a ∈ K over a subfield L ⊂ K is
∏
σi∈S σi(a), where

S consists of the K-embeddings σi that fix every element in L.
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Lemma 3.16. Let K = Q[x]/(xn + 1), for any positive integer n. ∀a, b ∈ K and c = a × b we

have that

‖c‖ ≤
√
n · ‖a‖ · ‖b‖.

Proof. Consider the ith coefficient ci of c. First observe for each i, ci is obtained as a dot product of

a and some reordering of entries of b (additionally the signs of some entries can also be reversed).

ci ≤ ‖a‖ · ‖b‖. This allows us to conclude that ‖c‖ ≤
√
n · ‖a‖ · ‖b‖.

Continuing with our example of the mth cyclotomic number field where K = Q(ζm) for

m > 2, there are 2s2 = n = ϕ(m) complex embeddings (and no real ones), which are given by

σi(ζm) = ζ im for i ∈ Z∗m. (It is convenient to index the embeddings by elements of Z∗m instead of

[n].) For an element x = ζj ∈ K in the power basis of K, all the embeddings of x have magnitude

1, and hence ‖x‖2 =
√
n and ‖x‖∞ = 1. Also considering the coefficient embedding ‖x‖can = 1.

3.3.3 Ideals in the Ring of Integers

The ring of integers OK , of a number field K of degree n, is a free Z-module (see [Wes99, p 39,

Theorem 2.22]) of rank n, i.e., the set of all Z-linear combinations of some integral basis B =

{b1, . . . , bn} ⊂ OK . Such a set is called an integral basis, and it is also a Q-basis for K. As usual,

there are infinitely many such bases when n > 1.

Continuing with our example of the mth cyclotomic number field K = Q(ζm) of degree n =

ϕ(m), the power basis {1, ζm, . . . , ζn−1
m } ofK also happens to be an integral basis of the cyclotomic

ring OK = Z[ζm]. (In general, it is unusual for the power basis of a number field to generate the

entire ring of integers.)

Definition 3.17. An (integral) ideal I ⊆ OK is a nontrivial (i.e., nonempty and nonzero5) additive

subgroup that is closed under multiplication by OK – that is, r · g ∈ I for any r ∈ OK and g ∈ I.

A fractional ideal I ⊂ K is a set such that d · I is an integral ideal for some d ∈ OK . The inverse

I−1 of an ideal I is the set {a ∈ K : a · I ⊆ OK}.
5Some texts also define the trivial set {0} as an ideal, but in this work it is more convenient to exclude it.
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An ideal I in OK is finitely generated as the set of all K-linear combinations of some gener-

ators g1, g2, . . . ∈ OK , denoted I = 〈g1, g2, . . .〉. (In fact, it is know that two generators [Ste04,

Proposition 9.1.7] always suffice.)

Definition 3.18. An ideal I is principal if I = 〈g〉 for g ∈ OK – that is, if one generator suffices.

More useful to us is the fact [Oss08, Proposition 1.6.1] that an ideal (integral or fractional) is

also a free Z-module of rank n, i.e., it is generated as the set of all Z-linear combinations of some

basis B = {b, . . . , bn} ⊂ OK .

Definition 3.19. An ideal p ( OK is prime if whenever a, b ∈ OK and ab ∈ p then either a ∈ p or

b ∈ p.

Definition 3.20. If I is an index of a ring of integers OK , we define the norm of I to be

N(I) = |OK/I|

where |OK/I| dentes the size of the quotient ring OK/I.

InOK , an [Ste04, Proposition 6.1.4] ideal p is prime if and only if it is maximal, i.e., if the only

proper superideal of p is OK itself, which implies that the quotient ring OK/p is a finite field of

order N(p).

Proposition 3.21 ([Oss08, Lemma 1.6.7 and Corollary 1.6.9]). For a in a ring of integers OK , let

p = 〈a〉 be the principal ideal generated by a, then we have that N(I) = |N(a)|.

Suppose p is an ideal of a ring of integers OK , and N(p) = p for some prime integer p ∈ Z.

Then p is prime in OK .

Note that, many prime ideals do not have prime norms. In fact[Oss08, Lemma 4.6.1] if p is a

prime ideal in a ring of integers OK , then N(p) = pn for some prime p ∈ Z and n ∈ N.

Definition 3.22. Let I,J be ideal of a ring R. Their sum is the ideal

I + J = {a+ b : a ∈ I, b ∈ J }
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and their product IJ is ideal generated by all products of elements in I with elements in J , or

IJ = 〈a · b : a ∈ I, b ∈ J 〉.

Two ideals I,J ⊆ OK are said to be coprime (or relatively prime) if I + J = OK . Also we

have [Wes99, p 60, Lemma 2.2] N(IJ ) = N(I)N(J ).

Proposition 3.23 (Unique Factorization of Ideals [Ste04, Theorem 6.1.9]). Suppose I is an inte-

gral ideal of OK . Then I can be written as a product

I = p1 . . . pn

of prime ideals of OK , and this representation is unique up to order.

3.4 Ideal Lattices

Recall that a number field K = Q(ζ) is isomorphic to Q[x]/f(x) where f(x) is the minimal

polynomial of ζ . Also recall that any ideal I of OK is a free Z-module, i.e., it is generated as

the set of all Z-linear combinations of some basis B = {b1, . . . , bn} ⊂ OK . Therefore under the

coefficient embedding τ , the ideal I of OK yields a rank-n lattice τ(I) having basis {b1, . . . , bn},

where each bi = τ(bi). Obviously, addition is done component-wise in the coefficients, and

multiplication is polynomial multiplication modulo the polynomial f(x). 6 We call I an ideal

lattice to stress its dual interpretation as both an ideal and a lattice. When visualizing it as a lattice

we speak of, e.g., the minimum distance λ1(I) of an ideal, etc.

As pointed out earlier the mth cyclotomic ring with n = ϕ(m) happens to be exactly Z[ζm]

which corresponds to the lattice Zn.

Proposition 3.24 ([LPR12, p 22]). For any ideal I of the mth cyclotomic ring (with n = ϕ(m))

we have λn(I) = λ1(I).

6Under the canonical embedding we can obtain an alternate lattice. This alternate representation can be some-
times [LPR10] preferable. However, here we stick to coefficient representation as this is what is mainly used in our
construction.
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Consider the mth cyclotomic field such that n = ϕ(m). Observe that multiplying a shortest

nonzero element v ∈ I by 1, ζ, . . . , ζn−1 gives n linearly independent elements of the same length.

This allows us to conclude the above proposition.
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CHAPTER 4

The New Encoding Schemes

We will first describe our system for the “symmetric setting” (i.e. corresponding to Definition 2.2

in Section 2.2.) Later in Section 4.3 we explain how to handle the general case (Definition A.3 in

Appendix A). In this chapter we focus on functionality, leaving much of the discussion on security

considerations to Chapter 5.

An instance of our basic construction is parameterized by the security parameter λ and the

required multi-linearity level κ ≤poly(λ). Based on these parameters, we choose the 2nth cyclo-

tomic ring R = Z[x]/(xn + 1) where n is a power of 2 (n is set large enough to ensure security),

a modulus q that defines Rq = R/qR (with q large enough to support functionality), and an-

other parameter m (chosen so that we can apply Theorem 3.7). The specific constraints that these

parameters must satisfy are discussed in Section 4.2, an approximate setting to keep in mind is

n = Õ(κλ2), q = 2κλ and m = O(n2).
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4.1 The Basic Graded Encoding Scheme

We start by giving some intuition behind our scheme. An instance of our scheme relative to the

parameters above encodes elements of a quotient ring QR = R/I, where I is a principal prime

ideal I = 〈g〉 ⊂ R, generated by a “short” vector g. Namely, the “ring elements” that are encoded

in our scheme are cosets of the form e + I for some vector e. The short generator g itself is

kept secret, and no “good” description of I is made public in our scheme. In addition, our system

depends on another secret element z, which is chosen at random in Rq (and hence is not short).

A level-zero (“plaintext”) encoding of a coset e + I ∈ R/I is just a short vector in that

coset (which must exist, since the generator g is short and therefore the basic cell of I is quite

small). For higher-level encodings, a level-i encoding of the same coset is a vector of the form

c/zi ∈ Rq with c ∈ e + I short. Specifically, for i ∈ {0, 1, . . . , κ} the set of all level-i encodings

is Si = {c/zi ∈ Rq : ‖c‖ < q1/8}, and the set of level-i encodings of the “plaintext element” e+I

is S(e+I)
i = {c/zi ∈ Rq : c ∈ e + I, ‖c‖ < q1/8 }. Throughout the construction we use the size

of the numerator as the “noise level” in the encoding. Namely, with each level-i encoding c/zi we

produce also an upper bound on ‖c‖.

Instance generation: (params,pzt)← InstGen(1λ, 1κ). Our instance-generation procedure chooses

at random the ideal-generator g and denominator z, as well as several other vectors that are used in

the other procedures and are described later in the section. The denominator z is chosen uniformly

at random in Rq, and hence is not “small” with overwhelming probability. The ideal generator g

is sampled to be small and such that N(g) is prime. For technical reasons, we also need g−1 ∈ K

to be short. (Recall that we denote K = Q[x]/(xn + 1). The reason that we need g−1 ∈ K to be

short is explained when we describe the zero-testing procedure.)

We simply draw g from a discrete Gaussian over Zn, say g ← DZn,σ with σ =
√
λn repeat-

edly till we have that N(g) is prime and ‖g−1‖ ≤ nc+0.5/σ (in K) for an appropriate constant c.

Based on Lemma 4.1 and Lemma 4.2 we can conclude that this procedure samples g satisfying the

required constraints in polynomially many trials.

Once we have g, z, we choose and publish some other elements in Rq that will be used for
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the various procedures below. Specifically we have m + 1 elements x1, . . . ,xm,y that are used

for encoding, and an element pzt that is used as a zero-testing parameter. These elements are

described later. Finally we also choose a random seed s for a strong randomness extractor. The

instance-generation procedure outputs params = (n, q,y, {xi}i, s) and pzt.

Lemma 4.1. If g ← DZn,σ, then we have that ‖g‖ ≤ σ
√
n. Additionally the probability that

‖g−1‖ ≤ nc+0.5/σ (in K) is at least 1− 2/nc(1−δ)−1 for any constants c > 0 and 0 < δ < 1.

Proof. The fact ‖g‖ ≤ σ
√
n follows directly from Lemma 3.5.

Now we argue that with good probability g−1 in the field of fractions K is also rather short. To

see this, we will first argue that with probability 1 − 1/nc(1−δ), evaluating g at any complex n’th

root of unity ζ ∈ C yields g(ζ) which is not too tiny, say larger than σ/nc. Observe that g(ζ) is in

C and the real part of g(ζ) serves as a lower bound on the size of |g(ζ)| itself and hence it suffices

to bound this value. Next note that this real component of g(ζ) is a sum of discrete gaussians over

one dimensional lattices defined by real components of the powers of ζ . As long as this σ is large

enough, this sum will again [BF11b, Lemma 4.12] be a discrete gaussian with parameter larger

than σ over some lattice Λ. This allows us to conclude that for any constant 0 < δ < 1 we have

Pr[|g(ζ)| ≤ σ/nc] < 1/nc(1−δ). We conclude by considering two cases: First, if σ/nc is greater

than the fundamental parallelepiped of Λ then we are done because the probability of the chosen

value being 0 is negligible. In the second more interesting case we have that σ/nc is smaller than

the fundamental parallelepiped of Λ. In this case assume a = Pr[|g(ζ)| ≤ σ/nc] and observe that

a = Pr[σ/nc ≤ |g(ζ)| ≤ nc(1−δ) · σ/nc] ≥ a · e
−π
n2cδ (nc(1−δ) − 3) < a ·

(
1− π

n2cδ

)
· (nc(1−δ) − 3).

Since this values must be < 1 therefore we have that a < 2
nc(1−δ)

.

Next by taking a union bound, with probability 1 − 2/nc(1−δ)−1 we have g−1(ζ) = 1/g(ζ) <

nc/σ for all the primitive 2n’th roots of unity ζ , which means that ‖g−1‖can∞ < nc/σ. This implies

an upper bound of ‖g−1‖∞ < nc/σ as well (because [DPSZ11, Theorem 7 and Discussion on

p. 39] ∀a we have that ‖a‖∞ ≤ ‖a‖can∞ for the specific cyclotomic ring we are using). Hence a

bound of ‖g−1‖ < nc+0.5/σ.
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Lemma 4.2. If g ← DZn,σ, then we have that with noticeable probability N(g) is prime. This

implies that the ideal 〈g〉 is a principal prime ideal.

We use a principal ideal I = 〈g〉, where the norm N(g) = |R/I| is prime. Landau’s prime ideal

theorem [Lan03] is the number field generalization of the prime number theorem. It guarantees that

with probability about 1/ lnN(g) a random ideal is prime. Further it is known that the prime ideals

are dominated by the ideals of norm a prime number. Using Hilbert’s class field and Chebotarev

density theorem it can be further concluded that a noticeable fraction of the principal ideals are

also principal. This is indeed the approach Smart and Vercauteren [SV10] took for key generation

in their variation of Gentry’s fully homomorphic encryption scheme [Gen09b]. Once we have

sampled g such that N(g) is a prime we can use Proposition 3.21 to claim that 〈g〉 is indeed a

principal prime ideal.

Note that the constant c for the sampling procedure will have to be chosen such that the prob-

ability of rejecting g−1 because it is not small enough is less than the probability with which we

expect to get principal prime ideals. (Note that in certain application it may not be essential for the

ideal I to be a prime. For example, for the application (as explained in Chapter 6) of one-round

N -party key-exchange it suffices to have a principal ideal I such that its norm has large prime

factors.)

Sampling level-zero encodings: d← samp(params). To sample a level-zero encoding of a ran-

dom coset, we just draw a random short element in R, d← DZn,σ′ , where σ′ = σn
√
λ (for σ that

was used to sample g). In Lemma 4.3 we argue that the sampled value d corresponds to a random

coset of I. Finally note that by Lemma 3.6 the size of this level-zero encoding is bounded by σ′
√
n

(and we use this as our noise-bound for this encoding).

Lemma 4.3. Let I = 〈g〉 and σ′ ≥
√
λn‖g‖, then we have that the distribution d mod I where

d← DZn,σ′ is close to uniform over Zn mod I, up to negligible distance.

Proof. We can safely assume that λ1(I) ≤ ‖g‖. Next according to Proposition 3.24 we have

that λn(I) = λ1(I). This along with Lemma 3.2 allows us to conclude that with overwhelming
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probability

η2−λ(I) ≤
√

ln(2n(1 + 1/ε))

π
· ‖g‖

≤
√

ln(2n(1 + 1/ε))

π
· ‖g‖

≤
√
λn‖g‖

Finally since we have that σ′ ≥ η2−λ(I), therefore by Corollary 3.4 we can conclude that the

induced distribution over the cosets of I is close to uniform, up to a negligible distance.

Encodings at higher levels: ui ← enc(params, i,d). To allow encoding of cosets at higher levels,

we publish as part of our instance-generation a level-one encoding of 1 + I, namely an element

y = [a/z]q where a ∈ 1 + I is short. A simplistic method of doing that is drawing a← D1+I,σ′′ ,

for some parameter σ′′, then computing y from a. (Later we describe a somewhat more involved

procedure, which we believe is more secure, see details in Section 5.4.) Given a level-zero encod-

ing d as above, we can multiply it by y over Rq to get u1 := [yd]q. (We use the notation [·]q to

denote operations in Rq.) Note that u1 = [da/z]q, where da ∈ d + I as needed. Note that the

size of the numerator da of u1 can be bounded by γMult‖d‖ · ‖a‖ (recall that γMult can be bounded

by
√
n using Lemma 3.16) and we use this as our noise-bound for this encoding. More generally

we can generate a level-i encoding as ui := [dyi]q = [dai/zi]q. The numerator dai is obviously

in d + I, and its size can again be bounded (using Lemma 3.16) by γi/2Mult‖d‖ · ‖a‖i.

The above encoding is insufficient, however, since from u1 and y it is easy to get back d by

simple division in Rq. We therefore include in the public parameters also the “randomizers” xi,

these are just random encodings of zero, namely xi = [bi/z]q where the bi’s are short elements

in I. A simplistic procedure for choosing these randomizers would be to draw these elements as

bi ← DI,σ′′′ (where σ′′′ will be set later so that we can use Theorem 3.7) and publish xi = [bi/z]q.

(Later we describe a somewhat more involved procedure, which we believe is more secure, see

details in Section 5.4.) Below we denote by X the matrix with the vectors xi as rows, namely
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X = (x1| . . . |xm)T . We also use B to denote the matrix with the numerators bi as rows, i.e.,

B = (b1| . . . |bm)T .

We use the xi’s to randomize level-one encodings: Given u′ = [c′/z]q with noise-bound ‖c′‖ <

γ, we draw an m-vector of integer coefficients r ← DZm,σ∗ for large enough σ∗ (e.g. σ∗ = 2λγ),

and output

u := [u′ + Xr]q =

[
u′ +

m∑
i=1

rixi

]
q

(
=

[
c′ +

∑
i ribi

z

]
q

)
.

We write Br as a shorthand for
∑

i ribi and similarly Xr as a shorthand for
∑

i rixi.

Since all the bi’s are in the ideal I, then clearly c′ +
∑

i ribi is in the same coset of I as c′

itself. Moreover since (using Lemma 3.8) ‖bi‖ < poly(n,m) therefore we have that ‖Br‖ <

σ∗poly(m,n). If indeed ‖c′‖ < γ, then we can conclude that ‖c′+Br‖ < γ + σ∗poly(m,n) (and

we use this as our noise-bound for this encoding.)

We also claim that the distribution of u is nearly independent of original u′ (except of course

its coset). To see why, note that if the bi’s are chosen from a wide enough spherical distribution

(specifying a constraint on σ′′′) then we can use Theorem 3.7 to conclude that Br is close to a wide

ellipsoid Gaussian. With our choice of σ∗ the “width” of that distribution is much larger than the

original c′, hence the distribution of c′ +Br is nearly independent of c′, except in the coset that it

belongs to. In particular for this to work we will need σ∗ to be super-polynomially larger than the

noise bound of c′.

Adding and multiplying encodings. It is easy to see that the encoding as above is additively ho-

momorphic, in the sense that adding encodings yields an encoding of the sum. This follows since

if we have many short cj’s then their sum is still short, ‖
∑

j cj‖ � q, and therefore the sum

c =
∑

j cj = [
∑

j cj]q ∈ Rq belong to the coset
∑

j(cj +I). Hence, if we denote uj = cj/z ∈ Rq

then each uj is an encoding of the coset cj + I, and the sum [
∑

j uj]q is of the form c/z where c

is still a short element in the sum of the cosets.

Moreover, since I is an ideal then multiplying upto κ encodings can be interpreted as an en-

coding of the product, by raising the denominator to the appropriate power. Namely, for uj =
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cj/z ∈ Rq as above, we have

u =

[
κ∏
j=1

uj

]
q

=

[∏
j cj

zκ

]
q

.

As long as the cj’s are small enough to begin with, we still have ‖
∏

j cj‖ � q, which means

that [
∏

j cj]q =
∏

j cj (where the product
∏

j cj is computed in R), hence [
∏

j cj]q belongs to the

product coset
∏

j(cj + I).

Thus, if each uj is a level-1 encoding of the coset cj+I with short-enough numerator, then their

product is a level-κ encoding of the product coset. We note that just like level-1 encoding, level-κ

encoding (and in fact any of the intermediate level encoding) also offers additive homomorphism.

Zero testing: isZero(params,pzt,uκ)
?
= 0/1. Since the encoding is additively homomorphic, we

can test equality between encodings by subtracting them and comparing to zero. To enable zero-

testing, we generate the zero-testing parameter as follows: We draw a “somewhat small” ring

element h ← DZn,√q, such that h /∈ I and set the zero-testing parameter as pzt = [hzκ/g]q.

(Later we describe a somewhat more involved procedure, which we believe is more secure, see

details in Section 5.4.) To test if a level-κ encoding u = [c/zκ]q is an encoding of zero, we just

multiply it in Rq by pzt and check whether the resulting element w = [pzt · u]q is short (e.g.,

shorter than q3/4). Namely, we use the test

isZero(params,pzt,u) =

 1 if ‖[pztu]q‖∞ < q3/4

0 otherwise
(4.1)

In Lemma 4.4 we will argue that encodings of zero (such that the numerator is less than q1/8)

always pass the zero test. Next in Lemma 4.6 we argue that encodings of non-zero cosets pass the

zero test only with a negligible probability.

Lemma 4.4. For any u = [c/zκ]q such that ‖c‖ < q1/8 and c ∈ I = 〈g〉, such that ‖g−1‖ < q1/8

n3/2

(in K) we have that ‖[pztu]q‖∞ < q3/4 where h← DZn,√q, and pzt = [hzκ/g]q.

Proof. To see why this works, we note that

w = pzt · u =
hzκ

g
· c
zκ

= h · c/g (all the operations in Rq).
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If u is an encoding of zero then c is a short vector in I (containing elements gr for r ∈ R),

which means that it is divisible by g in R. Hence the element c/g ∈ R is the same as the element

c · g−1 ∈ K. Next we have that c · g−1 is at most ‖c‖ · ‖g−1‖ · γMult (recall that using Lemma 3.16

γMult can be bounded
√
n). Next we have that ‖w‖ ≤ ‖h‖ · ‖c‖ · ‖g−1‖ · γ2

Mult, which for our

choice of parameter is q1/2 ·
√
n · q1/8 · ‖g−1‖ · n < q3/4 (Note that by Lemma 3.5 we have that

‖h‖ ≤ q1/2 ·
√
n with overwhelming probability). This immediately also gives an upper bound on

the `∞ norm of w.

If u is an encoding of a non-zero coset, then c is a short vector in some coset of I. In this

case we have w = [c · h/g]q, where c,g are small (and h is “somewhat small”). Intuitively, since

[h/g]q is large with high probability then for a “random enough” c we expect the size of w to be

large. More formally, we argue below (Lemma 4.5) that when choosing a uniformly random coset

of I = 〈g〉, there are no short elements c in that coset such that [c ·h/g]q is small. This will allow

up to conclude Lemma 4.6.

Lemma 4.5. Let w = [c · h/g]q and suppose ‖g ·w‖ and ‖c · h‖ are each at most q/2. Suppose

〈g〉 is a prime ideal. Then, either c or h is in the ideal 〈g〉.

Proof. Since g ·w = c · h mod q, and since ‖g ·w‖ and ‖c · h‖ are each at most q/2, we have

g ·w = c · h exactly. We also have an equality of ideals 〈g〉 · 〈w〉 = 〈c〉 · 〈h〉, and, since 〈g〉 is

a prime ideal and our cyclotomic ring is a unique factorization domain (see Proposition 3.23), we

have that 〈g〉 divides either 〈c〉 or 〈h〉 (or both). The result follows.

Lemma 4.6. Let q = nω(1), and 〈g〉 be a prime ideal such that ‖g‖ = poly(n). Sample h ←

DZn,√q such that h /∈ 〈g〉. Then, there is no ε > 0 and c /∈ I such that ‖c‖ < q1/8 and

‖[c · h/g]q‖ < q1−ε.

Proof. We are give than ‖c‖ < q1/8 and have ‖h‖ < √q · n (with overwhelming probability using

Lemma 3.5). Hence, using Lemma 3.16 we have that ‖c · h‖ < q1/8+1/2 · n < q/2. Also for the

sake of contradiction assume that that w = [c · h/g]q is such that ‖w‖ < q1−ε. Then again we
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have that ‖w · g‖ < q1−ε · ‖g‖
√
n < q/2 as ‖g‖ = poly(n) and q = nω(1). Now using Lemma 4.5,

we have that either c or h is in the ideal 〈g〉, which is a contradiction.

Extraction: s← ext(params,pzt, uκ). To extract a “canonical” and “random” representation of a

coset from an encoding u = [c/zκ]q, we just multiply by the zero-testing parameter pzt, collect

the (log q)/4−λ most-significant bits of each of the n coefficients of the result, and apply a strong

randomness extractor to the collected bits (using the seed from the public parameters). Namely

ext(params,pzt,u) = EXTRACTs(msbs([u · pzt]q)) (msbs of coefficient representation).

This works because for any two encodings u,u′ of the same coset we have

‖pztu− pztu
′‖∞ = ‖pzt(u− u′)‖∞ < q3/4,

so we expect pztu, pztu
′ to agree on their (log q)/4−λmost significant bits. (There is a negligible

(in λ) chance that u and u′ are such that pztu and pztu
′ are on opposite sides of a boundary, such

that they have different MSBs.) On the other hand, by Lemma 4.6, we know that we cannot have

‖pzt(u−u′)‖ < q1−ε when u−u′ encodes something nonzero, and therefore (since λ� log q/4)

the values pztu and pztu
′ cannot agree on their (log q)/4− λ MSBs.

This means, however, that no two points in the basic cell of I agree on their collected bits when

multiplied by pzt, so the collected bits from an encoding of a random coset have min-entropy at

least log |R/I|. We can therefore use a strong randomness extractor to extract a nearly uniform

bit-string of length (say) blog |R/I|c − λ.

4.2 Setting the parameters

In this section we provide the parameters for the basic setting that should be set so that all the

constraints required by the scheme are met. A overview is presented in Table 4.2.

• The basic Gaussian parameter σ that we use to draw the ideal generator, g ← DZn,σ, needs

to be set to satisfy σ ≥ η2−λ(Zn), which means that we have σ =
√
λn. Then as argued
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Parameter Constraints Value Set

σ By Lemma 4.1, ‖g‖ ≤ σ
√
n, ‖g−1‖ ≤ nc+0.5/σ.

√
nλ

σ′ By Lemma 4.3, σ′ ≥
√
nλ · ‖g‖. λn3/2

σ∗ Super-polynomially larger than γ the size of the

numerator of encoding being randomized. 2λγ

By Theorem 3.7, σ∗ > poly(n,m)

q Multiplication of κ encoding should

have small numerator. q ≥ 28κλnO(κ)

By Lemma 4.6, q > nω(1).

By Lemma 4.4, ‖g−1‖ < q1/8

n3/2 .

m Constrained by Theorem 3.7. O(n2)

Table 4.1: Parameters for our graded encoding scheme.

in Lemma 4.1 we have that the size of g is bounded with overwhelming probability by

‖g‖ ≤ σ
√
n = n

√
λ.

• Once we have the ideal lattice I = 〈g〉, the Gaussian parameter σ′ by Lemma 4.3 we should

have σ′ ≥ ‖g‖
√
λn. Given the bound from above bound on the size of g, it is sufficient to set

σ′ = λn3/2, which means that the size of level-zero elements is bounded with overwhelming

probability by λn2.

• Recall that σ′′ and σ′′′ are the the size of the numerators of y and the xi. Theorem 3.7

requires that σ′′′ be larger that η2−λ(Zn). In Section 5.4 we show an alternate (more secure)

procedure for generation of y and the xi’s and the that the size of the numerators in y and

the xi’s generated by that procedure will be bounded by σ ˙poly(n) with high probability.

• The Gaussian parameter σ∗ that we use to draw the coefficient vector r during re-randomization

of newly generated level-1 encodings, must be large enough so that: (1) The resulting dis-

tribution on
∑
rixi is to close to a wide ellipsoid Gaussian encodings of zero. Thus Theo-

rem 3.7 requires that σ∗ > poly(n,m, λ). (2) The resulting distribution on
∑
rixi is such
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that it “drowns” the numerator ad of the initial encoding ad/z and setting σ∗ = 2λ is suf-

fices for this purpose. For this value of σ∗, a re-randomized level-one encoding is of the form

[c/z]q with the size of c is bounded by ‖c‖ ≤ 2λ · poly(n,m).

• A level-κ encoding is obtained by multiplying κ level-one encodings (which will always be

re-randomized). Hence it is of the form [c/zκ]q with c of size bounded with high probability

by ‖c‖ ≤ (2λ · poly(n))κ = 2κλ · nO(κ). To use Lemma 4.6 for level-κ encodings, we need

‖c‖ ≤ q1/8, so it is sufficient to set q ≥ 28κλ · nO(κ). With this choice the constraints from

Lemma 4.6 (q > nω(1)) and Lemma 4.4 (‖g−1‖ < q1/8

n3/2 ) are easily satisfied.

• Finally, we need m to be sufficiently large so that we can use Theorem 3.7, which we can do

here by setting m = O(n2).

• Finally, in order to get λ-level security against lattice attacks, we roughly need to set the

dimension n large enough so that q < 2n/λ, which means that n > Õ(κλ2).

4.3 Extensions and Variants

Some applications of multi-linear maps require various modifications to the basic encoding scheme

from above, such as “assymetric maps” that have difference source groups. We briefly describe

some of these variants below.

Another re-randomization approach. Recall that the re-randomization approach as described the

in the basic variant of the scheme involved publishing encodings of zero which can then be added

to the encoded term to re-randomize it. A different approach is to re-randomize y first, by setting

y′ := y + Xr and then encode via the re-randomized encoding of 1, namely as u1 := [y′d]q.

This does not have the information-theoretic same-distribution guarantee as provided by the basic

variant of the scheme (since the distributions [y′d]q and [y′d′]q may differ, even if d,d′ are both

short and in the same coset). But on the plus side, it is more convenient to use this re-randomization

method for encoding at high levels i > 1: After computing the randomized y′, we can use it by

setting ui := [d(y′)i]q.
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Extending re-randomization. Note that in the basic variant of the scheme we used the matrix X

to randomize level-one encodings. Using similar pubic parameter Xi now consisting of encoding

of zero at the ith level, we can generalize the re-randomization procedure to work at any level

i ≤ κ. In particular we abstract this procedure as reRand(y, i,u′): Given u′ = [c′/zi]q with noise-

bound ‖c′‖ < γ, we draw an m-vector of integer coefficients r ← DZm,σ∗ for large enough σ∗

(e.g. σ∗ = 2λγ), and output u := [u′ + Xir]q as a re-randomized version of u. Using the same

argument as in the basic variant of the scheme we can conclude that the distribution generated in

this way will be independent of c′, except in the coset that it belongs to.

Note that for some applications (e.g. [GGH+13c]) it might be useful to use the re-randomization

operation multiple times. Here we consider the case in which ` re-randomizations (for some con-

stant `) are needed. Furthermore in between these re-randomization steps we might have some

(say, some constant) addition and multiplication operations on the intermediate encodings. One

way to achieve this would be to use σ∗ = 2λ
j when performing the jth re-randomization (for any

j). In other words sample r from DZm,σ∗ where σ∗ = 2λ
j and use it to re-randomize the encoding

that has been obtained after j − 1 previous re-randomizations. Furthermore observe that the addi-

tion and multiplication of encodings increases noise by a small factor which will be wiped clean

with re-randomizations. In this setting where at most ` re-randomizations are needed we will need

q > 28κλ`nO(κ) . Finally, in order to get λ-level security against lattice attacks, we will need to set

the dimension n such that n > Õ(κλ1+`).

Asymmetric encoding. Now we will describe our construction for general graded encodings

(Definition A.3 in Section A).

In this variant we still choose just one ideal generator g, but several different denominators

zj
r← Rq, j = 1, . . . , τ . Then, a vector of the form c/zj ∈ Rq with c short is a level-one encoding

of the coset c + I relative to the “j’th dimension”. In this case we use vectors rather than integers

to represent the different levels, where for an index w = 〈w1, . . . , wτ 〉 ∈ Nτ and a coset c′ + I,

the encodings of c′ + I relative to the index w are

S(c′+I)
w =

{
c/z∗ : c ∈ c′ + I, ‖c‖ < q1/8, z∗ =

τ∏
i=1

zwii

}
.

42



www.manaraa.com

To enable encoding in this asymmetric variant, we provide the public parameters yj = [aj/zj]q and

{xi,j = [bi,j/zj]q}i for all j = 1, 2, . . . , κ, with short ai ∈ 1 + I and bi,j ∈ I. To enable zero-test

relative to index 〈v1, . . . , vτ 〉 ∈ Nτ we provide the zero-test parameter pzt = (h·
∏τ

i=1 z
vi
i )/g ∈ Rq.

The parameters for this variant will have to be set in order to provide functionality up to
∑

i vi

levels. In particular, we will need q > 28κλ
∑
i vinO(κ) and n > Õ(κλ

1+
∑
i vi ).

Providing zero-test security. In applications that require resilience of the zero test even against

invalid encodings, we augment the zero-test parameter by publishing many elements pzt,i =

[hiz
κ/g]q for several different hi’s. As part of our new zero-test we require that a level-κ en-

coding must pass the zero-test relative to all the parameters pzt,i.

Consider a purported encoding u = c/zκ where in this case we do not assume necessarily that

‖c‖ < q1/8 (as would be true for a valid encoding). Applying multiple zero-testers, we obtain

pzt,1u = hic/g, . . . , pzt,tu = htc/g .

This t-dimensional vector lies in a lattice L generated by the vector (h1, . . . ,ht) modulo q, Note

that since ‖hi‖ � q for all i, the vector (h1, . . . ,ht) is quite short modulo q. Moreover, by making

t large enough (but still polynomial), we can ensure that all of the vectors in L whose lengths are

much less than q are unreduced (small) multiples of (h1, . . . ,ht). Therefore, if the encoding passes

the multiple zero-test, c/g must be small, and therefore u has the form of an encoding of zero.

Avoiding Principal Ideals. In light of the fact that some of the attacks in Section B rely on the

fact that I is a principal ideal, it makes sense to seek a scheme that can use also “generic” (non-

principal) ideals according to a nice canonical distribution. Unfortunately, we do not know how to

do this, since we do not know how to generate a general ideal I according to a nice distribution

together with short vectors (e.g., within poly(n) of the first minima) in each of I and I−1.

We note that we can at least adapt the zero-test to general ideals, should the other problems

be resolved. We can replace the single zero-test parameter pzt = [hzκ/g]q by n parameters,

pzt,i = [hiz
κ · f i]q, where the vectors f i are “in spirit” just a small basis of the fractional ideal

I−1 (but they are mapped to Rq via 1
x
∈ K 7→ x−1 ∈ Rq). We note that a similar approach

also addresses the (small) possibility that ‖g−1‖ is not small. Since g−1 ⊂ R, we can reduce g−1
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modulo the integral basis of R to obtain short elements of I−1, and hence zero-testers that are

sufficiently small.
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CHAPTER 5

Security of Our Constructions

The security of our graded encoding systems relies on new, perhaps unconventional assumptions,

and at present it seems unlikely that they can be reduced to more established assumptions, such as

learning-with-errors (LWE) [Reg05], or even the NTRU hardness assumption [HPS98]. Given that

the construction of multilinear maps has been a central open problem now for over a decade, we

feel that exploring unconventional assumptions for this purpose is well worth the effort, as long as

this exploration is informed by extensive cryptanalysis.

In this chapter we describe our attempts at cryptanalysis of our encoding schemes, and pro-

pose plausible countermeasures against the more “promising” lines of possible attacks. Despite

significant effort, we do not have a polynomial-time attack even against a simplistic scheme that

does not use any of these countermeasures. But the best (heuristic) attacks that we have come very

close, they may be able to break the simplistic scheme in slightly super-polynomial nO(log logn)

time. We stress, however, that we do not have such attacks against the “main scheme” as described

in Section 4.1. A survey of the cryptanalysis tools that we use (including some new tools that we

developed in the course of this work) can be found in Section B.
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Then we move to more sophisticated settings, identifying seemingly useful quantities that can

be computed from the public parameters, and other quantities that if we could compute them then

we could break the scheme. We describe averaging and lattice-reduction attacks that can perhaps

be useful in recovering some of these “interesting targets,” and propose countermeasures to render

these attacks less dangerous.

We begin our cryptanalysis with a “sanity check,” arguing that simplistic attacks that only com-

pute rational functions in the system parameters cannot recover any “interesting quantities”, and in

particular cannot break our DDH analog. In particular, we consider “simplistic” generic attacks that

operate on the encodings of params and the problem instance using only simple operations – add,

subtract, multiply, divide. That is, we model [Kal85a, Kal85b] attackers as arithmetic straight-line

programs (ASLPs). This model is analogous[Sho97b] to the generic group model, which is often

used as a “sanity check” in the analysis of group-based cryptosystems. As an example in our case,

an ASLP can generate the element pztx
κ
i , which equals hgκ−1b′i

κ where b′i = bi/g. We want to

check that an ASLP cannot generate anything “dangerous.”

We prove that an ASLP cannot solve GCDH. We do this by defining a weight function w

for rational functions, such that everything in the GCDH instance has weight zero, but a GCDH

solution has weight 1. The weight function behaves much like polynomial degree. For example,

the term [a/z]q in params has weight 0, since we set w(a) = 1 = w(z). As another example,

w(pzt) = w(h) + κ · w(z) − w(g), which equals 0, since we set w(g) = 1 and w(pzt) = 1 − κ.

To vastly oversimplify the remainder of our analysis, we show that, given terms of weight 0 (as in

the GCDH instance), an ASLP attacker can only produce more terms of weight 0, and thus not a

GCDH solution. (See Lemma 5.5 for a more accurate statement.)

More realistically, we consider (non-generic) averaging, algebraic and lattice attacks. Section

B provides an extensive survey of these attacks, many of which arose in the cryptanalysis of NTRU

signature schemes [HKL+00, HPS01, HHGP+03], but a couple of which are new (and will be of

broader interest).

Averaging attacks – described in Sections B.2 through B.5 – allow us, after seeing many ele-

ments of the form ri ·a for the same a but many different “random” ri’s, to get a good approxima-
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tion of a (or some related quantities from which we can derive a). In our case, one might attempt

to mount such an averaging attack on the (possibly many) encodings of 0 {xi = b′ig/z} that we

provide in params. Fortunately, Gentry, Peikert and Vaikuntanathan [GPV08] already provide a

countermeasure to this attack and similar “transcript” attacks. One of the key conceptual insights

of [GPV08] is that a signer with any good basis B of a lattice Λ (e.g., a lattice where ‖B‖ is

less than some bound β) can generate signatures according to a canonical Gaussian distribution

(with deviation tightly related to β). Thus, the signatures do not reveal anything about the signer’s

particular basis B aside from an upper bound on ‖B‖. Our encoding systems (Section 4) use a

similar approach, where we derive all the elements in the public parameters from a small set of

elements, using a GPV-type procedure.

Not surprisingly, our constructions can be broken using a very good lattice reduction oracle

(e.g., one that approximates SVP to within polynomial factors). For example, one attack begins

with the fact (shown in Section 5.3.3) that an attacker can efficiently compute the coset ei + I

used by any of the GDH participants. However, to convert this knowledge into a direct attack on

GCDH – that is, to put himself into the position of one of the legitimate players – the attacker must

find a short representative e of the coset ei + I. It can do this with a good lattice reduction oracle,

or with any short-enough element of I, but it is unclear how such an attack could be implemented

efficiently.

We also provide some new attacks in Appendix B. Our new attacks include a dimension-

halving attack on principal ideal lattices (Section B.8), demonstrating that one needs to double

the dimension of principal ideal lattices (compared to general ideal lattices) to preserve security.

Principal ideal lattices certainly arise in our scheme – in particular, it is straightforward from our

params to generate (see Section 5.3.1) a bases of principal ideals such as I = 〈g〉 – and therefore

we need to set our parameters to be resilient to this new attack. Also, in Section B.6, we provide a

polynomial-time algorithm to solve the closest principal ideal generator problem in certain cases.

Specifically, we can recover a generator of a principal ideal I = 〈g〉 from a basis of I and an ε-

approximation of the generator g, when ε ≤ n−Ω(log logn) (slightly inverse quasi-polynomial). The

latter attack emphasizes even more the necessity of preventing averaging attacks that could obtain
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such useful approximations.

Undoubtedly there is a lot of meat here for cryptanalysts. But the bottom line is that we have

extended the best known attacks and still not found an attack that is threatening to our construc-

tions.

5.1 Our Hardness Assumption

In our constructions, the attacker sees the public parameters params = (y, {xi}mi=1), where y =

[a/z]q is a level-1 encoding of 1 + I and each xi = [bi/z]q is a level-1 encoding of 0 + I. Recall

(from Table 4.2) that I = 〈g〉 where ‖g‖ = poly(n) = qo(1), and a level-i encoding of a coset

α + I is an element of the form u = [c/zi]q where c ∈ α + I is short, typically ‖c‖ = qo(1) (and

always ‖c‖ < q1/8). In addition the attacker also sees a zero-testing parameter at level κ of the

form pzt = [hzκ/g]q with ‖h‖ = q1/2+o(1).

Expressing the abstract GDDH assumption from Section 2 in terms of our specific construction,

we get the following computational assumptions (below we state both the search and the decision

versions). Consider the following process, on parameters λ, n, q, κ, σ = poly(n), σ∗ = σ · 2λ (as

described in Section 4):

1. (y, {xi}i,pzt)← InstGen(1n, 1κ)

2. For i = 0, . . . , κ

3. Choose ei ← DZn,σ and f i ← DZn,σ // ei,f i in random ηi + I, φi + I

4. Set ui =
[
eiy +

∑
j rijxj

]
q

where rij ← DZ,σ∗ // encode only the ηi’s

5. Set u∗ = [
∏κ

i=1 ui]q // level-κ encoding

6. Set v = [e0 · u∗]q // encoding of the right product

7. Set v′ = [f 0 · u∗]q // encoding of a random product

Definition 5.1 (GCDH/GDDH). The (graded) CDH problem (GCDH) is, on input ((y, {xi}i,pzt),

u0, . . . ,uκ) to output a level-κ encoding of
∏

i ei + I, specifically w ∈ Rq such that ‖[pzt(v −
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w)]q‖ < q3/4. 1 The graded DDH problem (GDDH) is to distinguish between v and v′, or more

formally between the distributions

DGDDH = {(y, {xi}i,pzt),u0, . . . ,uκ,v} and DRAND = {(y, {xi}i,pzt),u0, . . . ,uκ,v
′}.

5.2 Simplistic Models of Attacks

We begin our cryptanalysis effort by considering “simplistic” generic attacks. Roughly, these are

attacks in which we just take the terms the public parameters, add, subtract, multiply, and divide

them, and hope to get something useful out of it. In other words, we consider arithmetic straight-

line programs (ASLP) [Kal85a, Kal85b] over the ring Rq as our model of attack.

We argue that such simplistic attacks are inherently incapable of solving GCDH. To that end

we consider the different terms from the public parameters as formal variables, and show that all

of the rational functions that the attacker can derive have a special form. Then we argue that any

term of this form that expresses a solution to GCDH must refer to polynomials of large size and

cannot serve as a correct solution.

Before presenting this analysis, we remark that a slightly less simplistic attack model is the

black-box field (BBF) model of Boneh and Lipton [BL96]. In that model, the attacker can still

compute terms that are rational functions in the given parameters, but now it can also test whether

two terms are equal (and in our case perhaps also see the results of applying the zero test on two

terms). Although we do not have any bounds on the security of our scheme in this model, we note

that Boneh and Lipton’s generic BBF algorithm for solving discrete log does not extend to our

setting to solve our “discrete log” problem. The reason is that their algorithm requires black-box

exponentiations of high (exponential) degree, whereas our encodings only permit the evaluation of

polynomially-bounded degree, after which the “noise” in our encodings overwhelms the signal.

1This formulation allows the adversary to output even an invalid encoding, as long as it passes the equality check.
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5.2.1 Hardness of GCDH in the Arithmetic Straight-Line Program Model

Our ASLP analysis resembles potential-function analysis to some extent: We assign some weight

to terms from the public parameters and the GCDH instance that the attacker gets as input (and

think of this weight as our “potential”). We then characterize the weight of the terms that the

attacker can compute using an ASLP on these input terms, and argue that terms of this weight are

not useful for solving GCDH.

Notation. First, we establish some terminology. Recall that a rational function is a ratio of two

(multivariate) polynomials, and that the set of rational functions in some variables is closed under

addition, subtraction, multiplication and division. We denote the rational functions over the set of

variables V over a ring R byRR(V ).

Definition 5.2 (Weight of Variables and Rational Functions). Consider a set of variables V =

{x1, . . . , xt} over some ring R, and a weight function on these variables w : V → Z. This weight

function is inductively extended rational functions in these variables over R, w∗ : RR(V )→ Z as

follows:

• For any constant c ∈ R, w∗(c) = 0, and for any variable x ∈ V w∗(x) = w(x);

• ∀a ∈ RR(V ), w∗(−a) = w∗(a) and if a 6≡ 0 then w∗(1/a) = −w∗(a);

• ∀a, b ∈ RR(V ), s.t. a+b is not equivalent to any simpler function,w∗(a+b) = max{w∗(a), w∗(b)}.

• ∀a, b ∈ RR(V ), s.t. ab is not equivalent to any simpler function, w∗(ab) = w∗(a) + w∗(b).

It can be shown that this extension w∗ is well defined over the ring of integers in any number

field. One example of such a weight function is the degree of the polynomial in the variables in

V , when w(x) is set to 1 for each x ∈ V . Below we identify w∗ with w and denote both by w(·).

Definition 5.3 (Homogeneous Weight-Balanced Rational Function for weight function w(·)). We

say that a rational function r(x1, . . . , xt) = p(x1, . . . , xt)/q(x1, . . . , xt) is homogeneous for weight

function w(·) if p and q are such that each one of their monomials has the same weight. We say that
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r is homogeneous weight-balanced for weight function w(·) if it is homogeneous and has weight

zero.

We use the following easy fact:

Fact 5.4. Let r1(x1, . . . , xt) and r2(x1, . . . , xt) be homogeneous balanced rational functions for

weight function w(·). Then −r1, 1/r1, r1 + r2 and r1 · r2 are all homogeneous balanced rational

functions for weight function w(·).

Intuition. Using the above definitions, our basic strategy will be to treat the relevant elements in

out scheme as formal variables and assign a weight and a size to them. Wights will be assigned

such that all the terms that the adversary sees are homogenous weight-balanced rational functions.

Fact 5.4 then implies that the terms that an ASLP attacker can produce must also be homoge-

nous weight-balanced rational function. On the other hand the assigned size value lower-bounds

the expected size of that element in the actual scheme. The main lemma in our analysis asserts

that any element obtained as weight-balanced rational function, which is equivalent to
∏κ

i=0 ei/z
κ

(mod I), must have numerator of size more than
√
q. This means that when multiplied by the

zero-testing parameter we get reduction modulo q, hence such term will not pass the equality test.

Size of terms. Below we use the following rules for the evolution of the size: If a, b are an

elements of size sz(a), sz(b), respectively, then we have sz(−a) = sz(a), sz(1/a) = q, sz(a+ b) =

sz(a) + sz(b) and sz(ab) = sz(a) · sz(b). (The convention of sz(1/a) = q captures the intuition that

the inverse of a small Rq element has size roughly q.)

Weight and size of elements in our scheme. Recall that a GCDH attacker gets as input the

terms a/z, {bi/z}mi=1,hz
κ/g, and {ej/z}κj=0 (all in Rq), where we have I = 〈g〉, bi ∈ I for all i

and a ∈ 1 + I.

To ensure that all the terms that the attacker gets are homogenous weight-balanced rational

functions, we set w(z) = w(g) = w(a) = 1 and also w(bi) = 1 for all i and w(ej) = 1 for all j.

Finally, to make the zero-test parameter weight-balanced we set w(h) = 1− κ. We note that h is
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the only element that has negative weight. (If we wish to consider the decomposition bi = rig,

then w(ri) = 0, and similarly if we decompose a = rg + 1 then w(r) = 0.)

For our analysis below, it is sufficient to assign size c for some constant c > 0 to all the “small”

elements, size just over
√
q to the mid-size element h, and size q to the random element z. Namely

we have sz(z) = q, sz(g) = sz(a) = c, sz(bi) = c for all i, sz(ej) = c for all j and sz(h) =
√
q.

Lemma 5.5. Consider the GCDH instance Γ = (a/z, {bi/z}mi=1,hz
κ/g, {ej/z}κj=0) with weights

and sizes as above. Assume that q is a prime. Let A be an arithmetic straight-line program. If

A(Γ) = c/zk such that [c]q ≡
∏κ

j=0 ej (mod I) then sz([c]q) >
√
q.

Proof. By Fact 5.4 and the weights of elements in Γ, A can produce only homogenous weight-

balanced rational functions of the variables. Since w(z) = 1, this implies w(c) is κ. Going

forward, the intuition is since
∏κ

j=0 ej has weight κ + 1, the only way to get c to have the correct

weight is to make it divisible by h, since it is the only variable with negative weight. But this

makes the size of c at least
√
q.

Formally we prove below that any homogeneous balanced rational function d that satisfies

d ≡ c (mod q) and d ≡
∏κ

j=0 ej (mod I) much have size at least
√
q, so in particular this must

hold for [c]q.

Since c and d are homogeneous and d ≡ c (mod q), there exist two homogeneous rational

functions s, s′ such that c = sd + s′ with s ≡ 1 (mod q) and s′ ≡ 0 (mod q). Since c is

homogeneous therefore we have

w(c) = w(s) + w(d) = w(s′).

Similarly since d ≡
∏κ

j=0 ej (mod I) then we must have d = r
∏κ

j=0 ej + r′ for homoge-

neous rational functions r, r′ that satisfy r ≡ 1 (mod I) and r′ ≡ 0 (mod I), and again we

have

w(d) = w(r) + κ+ 1.

Putting the two weight equations together, we thus have w(c) = w(s) + w(r) + κ + 1. At

the same time, by Fact 5.4 we know that A can only produce weight-balanced rational terms, so
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w(c/zκ) = 0. Therefore w(c) = w(zκ) = κ, which implies that w(s) + w(r) = −1. This implies

that either w(s) < 0 or w(r) < 1.

Considering the size of d, we first note that if d = p/p′ for a nontrivial denominator p′ then

sz(d) ≥ q and there is nothing more to prove. Below we therefore assume that the denominator

p′ is trivial, i.e. d is a simple polynomial. Since d = r
∏κ

j=0 ej + r′, then also r′ is a simple

polynomial and the only terms that we can have in the denominator of r are the ej’s. But we know

that r ≡ 1 (mod I) so the same ej’s must be in its numerator, making r too a simple polynomial.

We conclude that r, r′ must both be simple polynomials, and sz(d) = sz(r) · sz(
∏

j ej) + sz(r′).

Returning to the weight, we now have two cases to analyze: either w(s) < 0 or w(r) < 0.

• If w(r) < 0, then since the only variable with non-positive weight in our scheme is h, it

must be that h divides r. Hence we get sz(c) ≥ sz(d) ≥ sz(r) ≥ sz(h) ≥ √q.

• Considering the other case w(s) < 0, we note s ≡ 1 (mod q) but none of the terms in our

system are equivalent to 1 modulo q. The only way to get a homogeneous rational function

s ≡ 1 (mod q) is if w(s) is divisible by q−1. Since the weight of s is negative and divisible

by q−1, then in particular we havew(s) ≤ −q+1. Therefore, w(r) ≥ q−2. For Γ, weights,

and sizes as defined above, clearly sz(r), and hence sz(d), exceeds
√
q.

5.3 Cryptanalysis Beyond the Generic Models

Below we attempt “real cryptanalysis” of our scheme, using state of the art tools in algebraic

cryptanalysis and lattice reduction. Throughout this section we consider in particular the GDDH

assumption, hence we assume that the attacker is given the following inputs, all relative to the

random element z ∈ Rq and the ideal I = 〈g〉 ⊂ R, with ‖g‖ ≈ σ
√
n.

• y = [a/z]q, a level-one encoding of 1, namely a ∈ 1 + I and ‖a‖ ≥ σ
√
n.
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• xi = [bi/z]q, m randomizing terms s.t. ∀i, bi ∈ I and ‖bi‖ ≥ σ
√
n. Below it will be

convenient to denote bi = b′i · g, where b′i is of size similar to bi.

• pzt = [hzk/g]q the zero-test parameter with ‖h‖ ≈ √qn;

• uj = [ej/z]q, κ+ 1 level-one encodings of random elements where ∀j, ‖ej‖ ≈ 2λσ
√
n;

• w = [c/zk]q, the “challenge element” with allegedly ‖c‖ < q1/8 and c ≡
∏κ

j=0 ej (mod I).

Our parameter setting is n = Õ(κλ2) and q ≈ 2n/λ. In the analysis below we consider as a

“real break” any method that has a heuristically significant chance of distinguishing the challenge

w from a level-κ encoding of a random element different from
∏

j ej .

5.3.1 Easily computable quantities

Using only algebraic transformations (with no need for lattice reduction), it is easy to compute

from the given parameters also the following quantities:

• Taking different κ-products including some number r ≥ 1 of the xi’s, some number s ≥ 0

of the uj’s and some power of y, and multiplying these products by the zero-test parameter

pzt, we get many different elements of the form

v =

[(
r∏

k=1

xik

)
·

(
s∏

k=1

ujk

)
· yκ−r−s · pzt

]
q

=

(
r∏

k=1

b′ik

)
· gr−1 ·

(
s∏

k=1

ejk

)
· aκ−r−s · h (5.1)

Importantly, the right-hand-side in Equation (5.1) is not reduced modulo q, because it is a

product of the mid-size h by exactly κ short elements, hence its size is smaller than q.

• All the v’s of the form of Equation (5.1) have a common factor h, but if we choose the other

elements at random then with high probability they will have no other common factors.

Hence after seeing enough of them we can expect to get a basis for the principal ideal lattice

〈h〉.
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A similar argument implies that we can also compute bases for the principal ideals 〈h · ej〉

for every j ∈ {0, 1, . . . , κ} and also bases for 〈h · g〉 and 〈h · a〉.

• Given a basis for 〈h〉, we can get a basis for the fractional principal ideal 〈1/h〉 (where 1/h

is the inverse of h in the number field K).

• Using the bases for 〈h · g〉 and 〈1/h〉, we can compute a basis for our principal ideal I =

〈g〉. Similarly we can also compute a basis for 〈a〉 and bases for all the principal ideals 〈ej〉.

The above tells us that we cannot expect to hide the ideal I itself, or the ideals generated by

any of the other important elements in our scheme. It may still be hard, however, to find the short

generators for these ideals, or any short elements in them. Indeed this difficulty is the sole reason

for the conjectured security of our schemes.

5.3.2 Using averaging attacks

Averaging attacks are described in Sections B.2 through B.5, roughly speaking they allow us, after

seeing many elements of the form ri ·a for the same a but many different “random” ri’s (e.g., that

are independent of a), to get a good approximation of a (or some related quantities from which

we can derive a).

In our case, if we use simplistic Gaussian distributions to choose all our public parameters,

then we expect to be able to apply these tools with elements from Equation (5.1), in order to get

approximations for h or h ·gr for various r’s. The tools from the literature do not quite work “right

out of the box” because the terms that we want to recover are not very short. Specifically they have

size more than
√
q, so techniques from the literature may need to average super-polynomial (or

even exponential) number of samples to get useful approximations.

In Section B.6, however, we describe a new method that can recover elements such as h or

h · gr from approximations that are not very accurate. The level of accuracy needed to apply

Theorem B.17 still requires super-polynomial number of samples, but only just: It is heuristically

enough to use only nO(log logn) samples. Indeed this potential attack is the reason for the slightly in-
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volved method of choosing the randomizers in Section 4.1, which is based on the countermeasures

discussed in Section 5.4 below.

We mention that another potential problem is that our public parameters only include a small

number of terms, whereas averaging attacks typically need a much larger number of samples.

However, the attacker can get many more samples by taking sums and products of terms from the

public parameters, and it seems likely that such samples will be “independent enough” to serve in

the averaging attacks.

Below we show how recovering (small multiples of) the terms g or 1/h, can be used to break

our scheme, and also a plausible method of using a small multiple of h · gr for a large value of r.

We remark that for the cases of having a small multiple of g or 1/h we can show a real working

attack, but for the case of having a small multiple of h · gr we only have a “somewhat plausible

approach” that does not seem to lead to a real attack.

5.3.3 Cryptanalysis with extra help

A short element in 〈g〉. We begin by showing that knowing any short element in the ideal I =

〈g〉 would enable the attacker to break our scheme. Any short element in I has the form d · g for a

short d (because g−1 ∈ K is short). We begin the attack by multiplying in Rq the short d ·g by the

zero-test parameter pzt, thus getting the modified zero-test parameter p′zt = [d · h · zκ]q. Then we

multiply the modified zero-test parameter by both the “challenge element” w and by the product

of κ of the random encodings uj .

In the case where w is indeed an encoding of the right product, we would have w = (cg +∏κ
j=0 ei)/z

κ for some not-too-big c (i.e., ‖c‖ < q1/8). Hence in this case we would get the two

elements

v1 := [p′zt ·w]q = d · h ·

(
c · g +

κ∏
j=0

ej

)
and v2 :=

[
p′zt ·

κ∏
j=1

uj

]
q

= d · h ·
κ∏
j=1

ej.

Our next goal is to “divide v1 by v2 modulo I” in order to isolate the element e0. For that purpose,

we use our knowledge of a basis of I and compute the Hermite normal form (HNF) of that lattice.

Recall that the HNF basis has the form of a upper-triangular matrix, and with good probability the
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first entry on the main diagonal is the norm of I and all the other entries are 1. Below we assume

that this is indeed the case, and denote the norm of I by N(I).

We can reduce both v1 and v2 modulo the HNF basis of I, and if the basis has the above special

form then we get two integers ν1 = [v1]HNF(I) ∈ Z and ν1 = [v1]HNF(I) ∈ Z. Clearly we have

ν1 ≡ v1 ≡ dh

κ∏
j=0

ej (mod I), and ν2 ≡ v2 ≡ dh

κ∏
j=1

ej (mod I)

Assuming that ν2 is co-prime to N(I), we can now compute over the integers η = ν1 · ν−1
2 mod

N(I). Observing that we always have N(I) ∈ I, we therefore get (for some τ ∈ Z)

η · ν2 = ν1 + τ ·N(I) ≡ ν1 (mod I).

At the same time we also have

e0 · ν2 ≡ e0 · v2 ≡ v1 ≡ ν1 (mod I).

Since ν2 is co-prime with N(I) then it is also co-prime with the ideal generator g, and hence the

two equalities above imply that η ≡ e0 (mod I).

Finally, we can reduce η modulo the rotation basis of d · g, which is a basis consisting of only

short vectors (because d · g itself is short). This yields a short element e′0 = η + t · dg ≡ η ≡ e0

(mod I). We observe that the short e′0 is functionally equivalent to the coset e0 which was encoded

in u0. (At least, it is functionally equivalent when d · g is short enough; if it is not short enough,

the attack may fail.)

In particular we can use it to verify that the challenge element is indeed an encoding of the

right product: we just multiply u′0 = e′0 · y to get a level-one encoding, then check that u0 − u′0

is a level-one encoding of zero. (Or course this test will fail in the random case, since the element

that we recover will be in the coset of f 0 not in the coset of e0.)

A small multiple of 1/h. Recall that we can compute from the public parameters a basis for

the fractional ideal 〈1/h〉. If we could find a “somewhat short” element in that lattice, namely an

element v = d/h with ‖d‖ � √q, then we can mount the following simple attack:
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Multiplying the zero-test parameter by v, we get the “higher-quality” zero-test parameter p′zt =

[pzt ·v]q = [dzκ/g]. Once we have this higher-quality parameter, we can square it and multiply by

one of the randomizers to get

p′′zt = [(p′zt)
2x0]q = [d2z2κ/g2 · b′0g]q = [d2b′0z

2κ/g]q.

If ‖d‖ is sufficiently short so that ‖d2b′0‖ � q, then we can use p′′zt as a zero-test parameter at

level 2κ. In particular we can distinguish whether the challenge element is an encoding of the right

product or a random product by computing the level-(κ + 1) encoding of the product
∏κ

j=0 uj ,

mapping w to level κ + 1 by multiplying with y, then use the level-2κ zero-test parameter p′′zt to

check if these two elements are indeed in the same coset.

A small multiple of hgr. If we could compute an element hgr (for a large value of r) or a not-

too-big multiple of it, say v = dhgr such that ‖v‖ � q, then the following line of attack becomes

“somewhat plausible,” though it does not seem to lead to a real attack.

Extracting the r’th root of v we get v′ = r
√
dh · g. We note that when dh is “random and in-

dependent of gr”, then r
√
dh (over the number-field K) tends to a (known) constant as r increases.

2 We can therefore hope that for a large enough value of r the fractional element r
√
v will provide

a good enough approximation of g, and then we could perhaps use an algorithm such as the one

from Section B.6 to recover g exactly.

It seems, however, that this line of attack as described does not work in our case. The reason is

that we cannot hope to get approximations of hgr for r ≥ κ − 1, and our dimension n is always

much larger than κ, so this method inherently cannot produce good enough approximations. Still

perhaps it can be used in conjunction with other tools.

2An easy example: If U ∈R [0, B] then Pr[U > 9
10B] = 0.1. However if U ∈R [0, B100] then Pr[ 100

√
U > 9

10B] ≈
1.
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5.4 Some Countermeasures

As explained above, the most potent attacks that we found against our scheme make use of averag-

ing attacks, using samples that we get by multiplying the zero-test parameter by products of κ other

elements from the public parameters. (See Section B.2 and B.4 for details on averaging attacks,

and a discussion of how devastating they are.) We note that for the purpose of defending against

averaging attacks we can ignore the GDDH instance, since it can be generated by the attacker itself

just from the public parameters. (At least as long as the averaging part does not use the challenge

element w.)

Fortunately, Gentry, Peikert and Vaikuntanathan (GPV) [GPV08] have already given us an

approach to defeat this sort of averaging attacks. One of the key conceptual insights of [GPV08] is

that using any good basis B of a lattice Λ (e.g., a lattice where ‖B‖ is less than some bound β) can

generate samples from the lattice according to a canonical Gaussian distribution (with deviation

tightly related to β). Thus, the sampled lattice points do not reveal anything about the sampler’s

particular basis B aside from an upper bound on ‖B‖. We will use a similar approach, where we

derive all the elements in the public parameters from a small set of elements, using a GPV-type

procedure.

Specifically, we give out (potentially many) encodings of 0 {x′i = b′i · g/z}. Let us ignore, for

the moment, the fact that these encodings live inRq, and instead pretend that we present them to the

attacker as elements b′ig/z in the overlying cyclotomic field. (Of course, we are giving the attacker

an additional advantage here.) Then, all of the encodings are in the fractional principal ideal lattice

J = 〈g/z〉. If we simply chose the b′i values randomly and independently, it is conceivable that an

averaging/transcript attack could recover g/z. However, we instead follow [GPV08] by generating

the encodings {bi} according to a Gaussian distribution over the fractional ideal lattice, using an

efficient discrete Gaussian sampler [GPV08, Pei10, DN12a]. By the same argument as [GPV08],

such encodings (presented in characteristic zero) reveal nothing in particular about the term g/z

that is being used to generate the encodings. More formally we have:

Theorem 5.6. [GPV08, Theorem 4.1] There is a probabilistic polynomial-time algorithm that,
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given a basis B of an n-dimensional lattice Λ = L(B), a parameter s ≥ ‖B̃‖ · ω(
√

log n) where

B̃ denotes the Gram-Schmidt orthogonalization3 of B, outputs a sample from a distribution that

is statistically close to DΛ,s.

As argued in Lemma 4.1 note that when choosing g ← DZn,σ we get ‖g−1‖ < nc+0.5/σ(in

K) with probability 1 − o(1), and we re-choose g until this condition is met. Similarly, one can

show that with probability 1 − o(1) over the choice of z we have ‖z−1‖ < n2/q (in K), so in our

instance generation we re-choose z until this condition is met. When this condition is met, then

we have ‖g/z‖ < σn3/q (using Lemmas 3.16 and 4.1). Additionally since we have ‖B̃‖ ≥ ‖B‖,

therefore we can use the GPV procedure (Theorem 5.6) to sample elements from J according to

the Gaussian distribution x′i ← DJ ,s with parameter s = σn3.5/q (say).

We note that the elements that we draw are of the form x′i = b′i ·g/z for some (integral) b′i ∈ R.

Moreover we can bound the size of the b′i’s by ‖b′i‖ ≤ n‖x′i‖ · ‖z‖ · ‖1/g‖ < n(σn4/q) · q
√
n ·

nc+0.5/σ = nc+6.

Next we map these elements to Rq by setting xi = [b′ig/z]q. Denoting the numerator by

bi = b′ig, we can bound its size by ‖bi‖ =
√
n‖b′i‖ · ‖g‖ < nc+6.5 · σ

√
n = σnc+7. Sampled this

way, we know that the randomizers xi do not provide any more power to the attacker beyond the

ability to sample elements from J according to DJ ,s. 4 Finally, we note that the public parameter

y corresponding to an encoding of 1 can also be sampled in a similar manner.

We set h in a similar way. Again, we use [GPV08] to prevent the attacker analyzing the zero-

tester h ·zκ/g geometrically to extract useful information about h, or the other terms, individually.

Roughly, once g and z are chosen, one chooses h according to an ellipsoid Gaussian of the same

“shape” as g/zκ, so that the distribution of the zero-tester is a spherical Gaussian.

An alternative heuristic countermeasure. Although we prefer to use the GPV-type approach

above, we note for completeness that another plausible line of defense against averaging attacks is

3In the Gram-Schmidt orthogonalization B̃ of B, the vector b̃i is the projection of bi orthogonally to
span(b1, . . . , bi−1).

4We expect it be even slightly less powerful, since these samples are mapped intoRq before the attacker sees them.
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to actually decrease the number of elements made public, perhaps as few as only two. Namely we

can publish only two elements x1 = [b′1g/z]q and x2 = [b′2g/z]q, perhaps chosen according to the

procedure above conditioned on b′1,b
′
2 being co-prime. To re-randomize a level-one encoding u,

we can then choose two small elements a1,a2 and set u′ = u+a1 ·x1 +a2 ·x2. One drawback of

this method is that we can no longer use Theorem 3.7 to argue that the output distribution of reRand

is nearly independent of its input, instead we need to use yet another computational assumption

(and a rather awkward one at that). Another drawback is that it is not at all clear that the attacker

cannot just take many terms of the form a1 · x1 + a2 · x2 (for many random pairs (a1,a2)) to use

for the samples of the averaging attacks.

5.5 Easiness of other problems

In light of the apparent hardness of our CDH/DDH analog, we could optimistically hope to get

also the analog of other hardness assumptions in bilinear maps, such as decision-linear, subgroup

membership, etc. Unfortunately, these problems turn out to be easy in our setting, at least with the

simple encoding methods from above.

To see why, observe that publishing level-1 encodings of 0 and 1 enables some “weak discrete

log” computation at any level strictly smaller than κ. Specifically, consider one particular encoding

of zero xj = [bj/z]q (where bj = cjg for some cj), which is given in the public parameters

together with an encoding of one y = [a/z]q and the zero-testing parameter pzt = [hzκ/g]q.

Given a level-i encoding with 1 ≤ i � κ, u = [d/zi]q, we can multiply it by xj , pzt, and some

power of y to get

f = [u · xj · pzt · yκ−i−1]q =

[
d

zi
· cj · g

z
· hz

κ

g
· a

κ−i−1

zκ−i−1

]
q

= d · cj · h · aκ−i−1︸ ︷︷ ︸
�q

= d · cj · h︸ ︷︷ ︸
∆j

(mod I).

We stress that the right-hand-side of the equality above is not reduced modulo q. This means

that from a level-i encoding u of an element d+I, we can get a “plaintext version” of d ·∆j from

some fixed ∆j (that depends only on the public parameters but not on u). This “plaintext version”
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is not small enough to be a valid level-zero encoding (because ∆j is roughly the size of h, so in

particular ∆j >
√
q). Nonetheless, we can still use it in attacks.

For starters, we can apply the above procedure to many of the level-one encodings of zero

from the public parameters, thereby getting many elements in the ideal I itself. This by itself still

does not yield a basis of I (since all these elements have the extra factor of h), but as shown in

Section 5.3.1 we can remove this extra factor and nonetheless compute a basis for I. This is not a

small basis of course, but it tells us that we cannot hope to hide the plaintext space R/I itself.

Next, consider the subgroup membership setting, where we have g = g1 · g2, we are given a

level-1 encoding u = [d/z]q and need to decide if d ∈ 〈g1〉. Using the procedure above we can

get f = d ·∆j , which belongs to the ideal 〈g1〉 if d does. Taking the GCD of the ideals 〈f〉 and

I will then give us the factor 〈g1〉 with high probability. It follows that the subgroup membership

problem is easy for the encoding method above.

Finally, consider getting a matrix of elements A = (ai,j)i,j , all encoded at some level i � κ.

Using the method above we can get a “plaintext version” of ∆j ·M , which has the same rank

as A. Since the decision linear problem is essentially a matrix rank problem, this means that this

problem too is easy for this encoding method.

At this point it is worth stressing again that these attacks do not seem to apply to the GDDH

problem, specifically because in that problem we need to make a decision about a level-κ encod-

ing, and the “weak discrete log” procedure from above only applies to encoding at levels strictly

below κ.

Alternatives. The attacks above make it clear that providing encodings of zero in the public pa-

rameters (in conjunction with the zero-testing parameter) gives significant power to the adversary.

One interesting method to counter these attacks is to use a different randomization tool that can

be applied even when we do not have these encodings of zero in the public parameters. For more

details on this, we refer the reader to the subsequent work on functional encryption [GGH+13b]

where such tools have been developed.
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CHAPTER 6

One-Round Key-Exchange

Diffie and Hellman in their seminal paper [DH76] provided the first construction of a one-round

two-party key-exchange protocol and laid the foundations for the work on public key cryptography.

Joux [Jou00] constructed the first one-round three-party key-exchange protocol using Weil and

Tate pairings. Boneh and Silverberg [BS03] showed how this result could be extended to get a

one-round N -party key-exchange protocol if multilinear maps existed. Our encoding schemes

easily support the Boneh-Silverberg construction, with one subtle difference: Since our public

parameters hide some secrets (i.e., the elements g,h, z) therefore our construction of one-round

N -party secret key exchange protocol has to rely on the common reference string model.

6.1 Definitions

Consider a setting with N parties who wish to set up a shared key using a one-round protocol.

The “one-round” refers to the setting in which each party is only allowed to broadcast one value

to all other parties. Furthermore all N broadcasts occur simultaneously. Once all the N parties
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broadcast their values, each party should be able to locally compute a global shared secret s. Using

the notation from [BS03], a one-round N -party key-exchange scheme consists of the following

three randomized PPT algorithms:

• Setup(λ,N): Takes a security parameter λ ∈ Z+ and the number of participants N as input.

It runs in time polynomial in λ,N and outputs public parameters params.

• Publish(params, i): Given an input i ∈ {1, . . . , N}, the algorithm outputs a pair (pubi, privi),

with both in {0, 1}∗. Every party i execute this algorithm with its input i and broadcasts the

generated value pubi to all other parties, and keeping privi secret.

• KeyGen(params, j, privj, {pubi}i 6=j): Party j ∈ {1, . . . N} collects the public broadcasts

sent by all other parties and executes KeyGen on all these public values and its secret value

privj . On this execution the algorithm KeyGen outputs a key sj .

The consistency requirement for the above scheme is that allN parties generate the same shared

key with high probability. The scheme is said to be secure if no polynomial time algorithm, given

all N public values (pub1, . . . pubN), can distinguish the true shared key s from random.

6.2 Our Construction.

We present a one-round N -party key-exchange protocol using an encoding schemes with κ =

N − 1, under the GDDH assumption. The construction is a straightforward adaptation of [BS03]:

Setup(1λ, 1N). We just run the InstGen algorithm of the underlying encoding scheme, getting

(params,pzt) ← InstGen(1λ, 1N−1), and outputting (params,pzt) as the public parameter.

Note that pzt is a level-N−1 zero-test parameter. Let q, n, σ be the corresponding parameters

of the encoding scheme. Note also that in this construction we insist that the order of the

quotient ring R/I be a large prime (or at least that it does not have any small divisors).

Publish(params,pzt, i). Each party i chooses a random level-zero encoding d← samp(params) as

a secret key, and publishes the corresponding level-one public key wi ← enc(params, 1,d).
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KeyGen(params,pzt, j,dj, {wi}i 6=j). Each party j multiplies its secret key dj by the public keys

of all its peers, vj ← dj ·
∏

i 6=j wi, thus getting a level-N − 1 encoding of the product

coset
∏

i di + I. Then the party uses the extraction routine to compute the key, sj ←

ext(params,pzt,vj). (Recall that in out case extraction consists of multiplying by the zero-

test parameter and outputting the high-order bits.)

The consistency requirement follows directly from the agreement property of the extraction

procedure in the underlying encoding scheme: Notice that all the parties get valid encodings of the

same uniformly-chosen coset, hence the extraction property implies that they should extract the

same key with high probability.

Similarly, security follows directly from a combination of the GDDH assumption and the ran-

domness property of the extraction property of the extraction procedure in the underlying encoding

scheme.

Theorem 6.1. The protocol described above is a one-round N -party Key Exchange protocol if the

GDDH assumption holds for the underlying encoding scheme.

Proof. We need to show that an attacker that sees all the public keys cannot distinguish the output

of the first party (say) from a uniformly random string. By GDDH, the adversary cannot distinguish

between the level-(N − 1) encoding v1 ← d1 ·
∏

i>1 wi that Party 1 computes and an element

v′1 ← d′1 ·
∏

i>1 wi that is obtained for a random and independent d′1 ← samp(params) (which is

a level-N − 1 encoding of the coset (d′1 ·
∏

i>1 di) + I).

By the randomness property of the sampling procedure, d′1 is nearly uniformly distributed

among the cosets of I. Since |R/I| is a large prime then with high probability
∏

i>1 di 6≡ 0

(mod I), and thus d′1 ·
∏

i>1 di is also nearly uniformly distributed among the cosets of I. We can

now use the randomness property of the extraction function to conclude that ext(params,pzt,v
′
1)

is a nearly uniform string, completing the proof.
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APPENDIX A

Generalizing Graded Encoding Systems

Here we generalize the definitions of graded encodings schemes from Section 2.2 to deal with the

“asymmetric case,” where there are many different “level-one sets” (corresponding to the many

different source groups). We view the different level-one sets as separate dimensions, and corre-

spondingly replace the index i from the symmetric case by an index-vector v ∈ Nτ (with N the

natural numbers and τ the equivalent of the number of different groups). The different level-one

sets correspond to the standard (τ -dimensional) unit vectors ei, and an encoding of α ∈ R relative

to the index ei (i.e., an element a ∈ S
(α)
ei ) is playing a role analogous to α · gi in asymmetric

multilinear maps.

Note that in our case we can have τ “different groups” and yet we can multiply up to some

number κ of different encodings, potentially κ 6= τ . Hence we can also get a mix of the sym-

metric and asymmetric cases. If u1, . . . , uκ are encodings of α1, . . . , ακ ∈ R relative to in-

dexes v1, . . . ,vκ ∈ Nτ , respectively, then u∗ = u1 × · · · × uκ is an encoding of the product

α∗ =
∏

i αi ∈ R relative to the sum of the indexes v =
∑

i vi ∈ Nτ .
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For this general setting, we replace the parameter κ by a set κ ⊂ Nτ which specifies the subset

of indexes where we can test for zero. Additionally the set of levels Below(κ) ⊂ Nτ includes

the indexes for which we can get valid encodings, and Of course, we preclude encoding “above

the zero-testing levels,” since for those levels we cannot check equality of encodings. Hence the

zero-test indexes implicitly define also the subset Below(κ). We begin by formalizing the notions

of “above” and “below” for our indexes, which is defined entry-wise.

Definition A.1 (Partial order on Nτ ). For an integer τ > 0 and two vector v,w ∈ Nτ , we define

v ≤ w ⇔ v[j] ≤ w[j] for all j = 1, 2, . . . , τ.

As usual, we have v < w if v ≤ w and v 6= w.

Definition A.2 (Below κ). For an arbitrary subset of indexes κ ⊂ Nτ we denote the set of indexes

“below κ” as:

Below(κ)
def
= {v ∈ Nτ : ∃w ∈ κ s.t. v ≤ w}.

We can now extend Definition 2.2 to the asymmetric case by defining κ-graded encoding sys-

tems, where we think of κ as the subset of indexes that admit zero-testing.

Definition A.3 (κ-Graded Encoding System). Let κ ⊂ Nτ be a finite set (for some integer τ > 0),

and let R be a ring. A κ-Graded Encoding System for R is a system of sets S = {S(α)
v ⊂ {0, 1}∗ :

v ∈ Below(κ), α ∈ R}, with the following properties:

1. For every fixed index v ∈ Below(κ), the sets {S(α)
v : α ∈ R} are disjoint (hence they form a

partition of Sv
def
=
⋃
α S

(α)
v ).

2. There are binary operations ‘+’ and ‘−’ (on {0, 1}∗) such that for every α1, α2 ∈ R, every

v ∈ Below(κ), and every u1 ∈ S(α1)
v and u2 ∈ S(α2)

v , it holds that

u1 + u2 ∈ S(α1+α2)
v and u1 − u2 ∈ S(α1−α2)

v (A.1)

where α1 + α2 and α1 − α2 are addition and subtraction in R.
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3. There is an associative binary operation ‘×’ (on {0, 1}∗) such that for every α1, α2 ∈ R,

every v1,v2 with v1 + v2 ∈ Below(κ), and every u1 ∈ S(α1)
v1 and u2 ∈ S(α2)

v2 , it holds that

u1 × u2 ∈ S(α1·α2)
v1+v2

. (A.2)

Here α1 · α2 is multiplication in R, and v1 + v2 is vector addition in Nτ .

Clearly, Definition A.3 implies that if we have a collection of n encodings ui ∈ S
(αi)
vi , i =

1, 2 . . . , n, then as long as
∑

i vi ∈ Below(κ) we get u1 × · · · × un ∈ S
(
∏
i αi)∑
i vi

. We note that

symmetric κ-multilinear maps as per Definition 2.2 correspond to {κ}-graded encoding systems

(with τ = 1), the asymmetric bilinear case corresponds to {(1, 1)}-graded systems (with τ = 2),

etc.

A.1 Efficient Procedures, the Dream Version

As before, we first describe a “dream version” of the efficient procedures and then explain how to

modify them to deal with technicalities that arise from our use of lattices in the realization.

Instance Generation. The randomized InstGen(1λ, τ,κ) takes as inputs the parameters λ, τ the

subset κ ⊂ Nτ . It outputs (params,pzt), where params is a description of a κ-Graded

Encoding System as above, and pzt is a set of zero-test parameters for the indexes in κ.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S
(α)
0 for a

nearly uniform element α ∈R R. (Note that we require that the “plaintext” α ∈ R is nearly

uniform, but not that the encoding a is uniform in S(α)
0 .)

Encoding. The (possibly randomized) enc(params,v, a) takes a “level-zero” encoding a ∈ S(α)
0

for some α ∈ R and index v ∈ Below(κ), and outputs the “level-v” encoding u ∈ S(α)
v for

the same α.

Addition and negation. Given params and two encodings relative to the same index, u1 ∈ S(α1)
v

and u2 ∈ S(α2)
v , we have add(params, i, u1, u2) = u1+u2 ∈ S(α1+α2)

v , and sub(params, i, u1, u2) =

u1 + u2 ∈ S(α1+α2)
v ,

68



www.manaraa.com

Multiplication. For u1 ∈ S(α1)
v1 , u2 ∈ S(α2)

v2 with v1+v2 ∈ Below(κ), we have mul(params,v1, u1,v2, u2) =

u1 × u2 ∈ S(α1·α2)
v1+v2

.

Zero-test. The procedure isZero(params,v, u) output 1 if v ∈ κ and u ∈ S(0)
v and 0 otherwise.

Note that in conjunction with the subtraction procedure, this lets us test if u1, u2 ∈ Sv encode

the same element α ∈ R.

Extraction. This procedure extracts a “canonical” and “random” representation of ring elements

from their level-v encoding. Namely ext(params,pzt, u) outputs (say) s ∈ {0, 1}λ, such

that:

(a) For any α ∈ R, v ∈ κ and two u1, u2 ∈ S(α)
v , ext(params,pzt,v, u1) = ext(params,pzt,v, u2),

(b) For any v ∈ κ, the distribution {ext(params,pzt,v, u) : α ∈R R, u ∈ S(α)
v } is nearly

uniform over {0, 1}λ.

A.2 Efficient Procedures, the Real-Life Version

As before, our real-life procedures have noise bounds and we are only ensured of their properties

when the bounds are valid and small enough. Also as before, we relax the requirements on the

zero-test and the extraction routines, as we now describe.

Zero-test. We sometime allow false positives for this procedure, but not false negatives. Namely,

isZero(params,pzt,v, u) = 1 for every v ∈ κ and u ∈ S(0)
v , but we may have isZero(params,pzt,v, u) =

1 also in other cases. Again our weakest functionality requirement that we make is that for a

uniform random choice of α ∈R R, we have for every v ∈ κ

Pr
α∈RR

[
∃ u ∈ S(α)

v s.t isZero(params,pzt,v, u) = 1
]

= negligible(λ). (A.3)

Additional requirements are considered security features (that a scheme may or may not

possess), and are discussed later in this section.
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Extraction. We replace1 properties (a)-(b) from the dream-version above by the weaker require-

ments:

(a′) For a randomly chosen a ← samp(params) and every v ∈ κ, if we run the encoding

algorithm twice to encode a at level v and then extract from both copies then we get:

Pr

 ext(params,pzt,v, u1)

= ext(params,pzt,v, u2)
:

a← samp(params)

u1 ← enc(params,v, a)

u2 ← enc(params,v, a)

 ≥ 1− negligible(λ).

(b′) The distribution {ext(params,pzt,v, u) : a ← samp(params), u ← enc(params,v, a)}

is nearly uniform over {0, 1}λ.

We typically need these two conditions to hold even if the noise bound that the encoding

routine takes as input is larger than the one output by samp (upto some maximum value).

A.3 Hardness Assumptions

The DDH analog for this case says that it is hard to recognize encoding of products, except relative

to indexes in Below(κ). One way to formalize it is by letting the adversary choose the level

“above κ” on which it wants to be tested. This is formalized by the following process. (Below we

suppress the noise bounds for readability):

1. (params,pzt)← InstGen(1λ, τ,κ)

2. v,v∗ ← A(params,pzt) // v ∈ κ and v∗ /∈ Belowκ

3. For i = 1, . . . , τ , for j = 1, . . . v∗i : // v∗i denotes the ith component of v∗i

4. Choose ai,j ← samp(params) // level-0 encoding of random αi,j ∈R R

5. Set ui,j ← enc(params, ei, ai,j) // encoding of αi,j w.r.t the i’th unit vector

6. Set ã =
∏

i,j ai,j // level-0 encoding of the product

7. Choose â← samp(params) // level-0 encoding of a random element

1Our construction from Section 4 does not support full canonicalization. Instead, we settle for
ext(params,pzt,v, u) that has a good chance of producing the same output when applied to different encoding of
the same elements.
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8. Set ũ← enc(params,v, ã) // level-κ encoding of the product

9. Set û← enc(params,v, â) // level-κ encoding of random

The adversary A then gets all the ui,j’s and either ũ or û, and it needs to guess which is the

case. It is considered successful if the guess is correct and in addition v ∈ κ and v � v∗. The

generalized GDDH says that for any setting of the parameters, the following two distributions,

defined over the experiment above, are computationally indistinguishable:

DGenGDDH = {(params,pzt, {ui}i, ũ)} and DGenRAND = {(params,pzt, {ui}i, û)}.

Zero-test security. Zero-testing security is defined exactly as in the symmetric case, except that

we require it to work relative to all the indexes v ∈ κ.

71



www.manaraa.com

APPENDIX B

Survey of Lattice Cryptanalysis

Here we provide a survey of relevant cryptanalysis techniques from the literature, and also provide

two new attacks that we developed in the course of this work. Our new attacks are extensions

of techniques that were developed in [GS02] for attacking NTRU signatures: In Section B.8 we

describe a “dimension-halving attack” on principal ideal lattices, demonstrating that one needs to

double the dimension of principal ideal lattices (compared to general ideal lattices) to preserve

security. Then in Section B.6 we provide a polynomial-time algorithm that solves the closest

principal ideal generator problem in certain cases. Specifically, it can recover a generator of a

principal ideal I = 〈g〉 from a basis of I and an ε-approximation of the generator g, for small

enough ε – namely, ε ≤ n−Ω(log logn).

B.1 Preliminaries

In this section we will recall some more notions that will be essential in understanding the crypt-

analysis.
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Definition B.1 (Unit Group). The group of units UK associated to a number field K is the group

of elements of OK that have an inverse in OK .

Proposition B.2 ([Ste04, Proposition 12.1.4]). An element a ∈ OK is a unit if and only if N(a) =

±1.

The unit group may contain torsion units (roots of unity) and nontorsion units.

Let σ : K → Rs1×C2s2 be the canonical embedding defined in Section 3.3.2. The logarithmic

embedding λ : UK → Rs1+s2 is a homomorphism from a multiplicative group to an additive group

given by λ(a) = (ln |σ1(a)|, . . . , ln |σs1+s2(a)|).

The kernel of λ is defined to be the the torsion units in K.

Proposition B.3. The torsion units in UK consists exactly of all roots of unity of K, which form a

finite cyclic group.

For a number field with at least one real embedding the torsion must therefore be only {1,−1}.

There are number fields, for example most imaginary quadratic fields, having no real embeddings

which also have {1,−1} for the torsion of its unit group.

For every unit u ∈ UK (including nontorsion units), since N(u) = ±1, we have
∑

i∈[s1] ln |σi(u)|+

2
∑

i∈[s2] ln |σs1+i(u)| = 0. This implies that units have rank less that s1 + s2− 1. By the Dirichlet

Unit Theorem, the group of units is finitely generated and has rank (where rank refers to maximal

number of multiplicatively independent elements) is exactly equal to s1 + s2 − 1. This is proved

by showing that the image of UK under λ is a lattice.

In short, viewed through the logarithmic embedding, the units are endowed with the geometry

of a lattice. We call this lattice the Dirichlet unit lattice.

Returning to our example of the mth cyclotomic number field K = Q(ζm) has a maximal real

subfieldK+ = Q(ζm+ζ−1
m ), and thus all elements inK+, are real numbers. It has index 2 inK; its

degree is n/2. The ring of integers [Was82, Proposition 2.16] OK+ of K+ is simply Z[ζm + ζ−1
m ].

The embeddings σ1, σ−1 both fix every element in K+, and the relative norm NK/K+(a) of a ∈ K

is σ1(a) · σ−1(a) = a · a.
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The group of units UK in the cyclotomic number field K = Q(ζm) has rank s2 − 1 = n/2− 1.

Since the signature of the real subfield K+ is (n/2, 0), the rank of the real units UK+ = UK ∩OK+

is also n/2 − 1. For m a prime power, UK is generated by ζm and UK+ . For m a prime power,

an explicit set of generators of UK is {±ζm, (1 − ζkm)/(1 − ζm) : k ∈ Z∗m}. To see that ε =

(1 − ζkm)/(1 − ζm) is a unit, observe that ε = 1 + ζm + . . . + ζk−1
m ∈ OK and NK/Q(ε) =∏

`∈Z∗m
(1− ζ`m)/

∏
`∈Z∗m

(1− ζ`m) = 1. Ramachandra [Ram67] explicitly described a full-rank set

of independent units for the case that m not a prime power.

In the coefficient embedding, where a ∈ OK is viewed as a polynomial a(x) ∈ Z[x]/Φm(x),

we have an extension of Fermat’s Little Theorem: a(x)Q = a(xQ) mod Q for any prime Q. When

Q = 1 mod m, this becomes aQ = a mod Q.

B.1.1 Some Computational Aspects of Number Fields and Ideal Lattices

An element v ∈ K can be represented in its canonical embedding conveniently in terms of the

integral basis for OK . Given v ∈ K represented in its canonical embedding, it is efficient to

convert it to its coefficient embedding, or vice versa – via linear transformations corresponding

to multipoint interpolation and evaluation. “Efficient” means in time polynomial in n, log ∆K ,

and the bit-length of v. (Here, ∆K is the discriminant of K. For the important case of the m-th

cyclotomic field of degree n = φ(m), we have ∆K ≤ nn.) Given v1, v2 ∈ K, represented in either

their canonical or their coefficient embeddings, it is efficient to compute v1 + v2, v1 · v2, and v1/v2.

To handle denominators, the inverse 1/v2 can be represented as v′2/N(v2) where v′2 ∈ OK .

Like all lattices, an ideal lattice has a canonical basis called its Hermite Normal Form (HNF).

The HNF basis of a lattices is unique and can be computed efficiently from any other basis of the

lattice. The HNF basis has nice efficiency properties – in particular, it can be expressed in at most

O(n log d) bits, where d is the absolute value of the determinant of a basis of the lattice [Mic01]. It

also has nice security properties, in the sense that it reveals no information that cannot be derived

in polynomial time from any other basis [Mic01]. For ideal lattices in the canonical embedding,

the HNF basis is an integer lattice representing a linear transformation of the integral basis of OK .
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The determinant of the HNF basis equals the norm of the ideal. Given HNF bases of ideals I1, I2,

one can efficiently compute an HNF basis for the ideals I1 + I2, I1 · I2, I1/I2. Various other

natural operations on ideals and bases are also efficient. An example: one can efficiently reduce an

element v ∈ K modulo a basisB – that is, find the element w ∈ K with v−w ∈ I and w ∈ P(B),

where P(B) is the parallelepiped associated to B.

B.1.2 Computational Hardness Assumptions over Number Fields

Hard problems involving ideal lattices often have both algebraic and geometric aspects.

Geometrically, we can specialize standard lattice problems – such as the shortest vector prob-

lem (SVP), shortest independent vector problem (SIVP), closest vector problem (SVP), the bounded

distance decoding problem (BDDP), etc. – to ideal lattices. The celebrated LLL algorithm [LLL82]

finds somewhat short vectors in (general) lattices:

Fact B.4. Let B = {b1, . . . , bn} be a basis of a lattice Λ. Given B, the LLL algorithm outputs

a vector v ∈ L satisfying ‖v‖2 ≤ 2n/2 · det(Λ)1/n. The algorithm runs in time polynomial in the

size of its input.

Schnorr and others have described other lattice reduction algorithms with a variety of tradeoffs;

for example, [Sch87] proves the following:

Fact B.5. Let B = {b1, . . . , bn} be a basis of a lattice Λ. Given B and integer k, Schnorr’s

algorithm [Sch87] outputs a vector v ∈ Λ satisfying ‖v‖2 ≤ kO(n/k) · det(Λ)1/n in time kO(k).

The asymptotics of lattice reduction algorithms are still similar to [Sch87], and thus attacks on

ideal lattices using purely geometric tools are limited.

Algebraically, we can consider problems such as the factorization of ideals, the structure of

the class group and unit group, etc. Subexponential classical algorithms are known for factoring

ideals, computing the class group and unit group, and computing a generator of a principal ideal

(the Principal Ideal Generator Problem (PIGP)). Polynomial-time quantum algorithms are known

for the latter three problems when the degree of the field is constant [Hal05, SV05].
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Factoring ideals reduces to factoring integers, hence is subexponential-time classically [LLMP90]

and polynomial-time quantumly [Sho97a]. In particular, for any monogenic ring R = Z[x]/(f(x))

such as OK for a cyclotomic field K, there is an efficient algorithm to find all of the prime ideals

in R with norms that are a power of a prime p. The algorithm resorts to the following theorem.

Theorem B.6 (Kummer-Dedekind, from [Ste08]). Suppose f(x) =
∏

i gi(x)ei mod p for prime

integer p. The prime ideals pi in Z[x]/(f(x)) whose norms are powers of p are precisely pi =

(p, gi(x)).

There are polynomial time algorithms for factoring polynomials in Zp[x] – e.g., by Kaltofen and

Shoup [KS98]. Therefore, at least for monogenic rings, factoring an ideal with norm N efficiently

reduces to factoring the integer N .

Peikert and Rosen [PR07] provided a reduction of an average-case lattice problem to the worst-

case hardness of ideal lattice problem, where the lossiness of the reduction was only logarithmic

over fields of small root discriminant. Gentry [Gen10] showed that ideal lattice problems are

efficiently self-reducible (in some sense) in the quantum setting. This worst-case/average-case

reduction exploited, among other things, efficient factorization of ideals via Kummer-Dedekind.

Lyubashevsky, Peikert and Regev [LPR10] defined a decision problem called “ring learning with

errors” (RLWE) and showed that an attacker that can solve RLWE on average can be used to

solve ideal lattice problems, such as SIVP, in the worst case. (Earlier, Regev [Reg05] found an

analogous worst-case/average-case connection between the learning with errors (LWE) problem

and problems over general lattices.) They relied heavily on the algebraic structure of ideal lattice

problems – in particular, on underlying ring automorphisms – to construct their search-to-decision

reduction.

B.2 Averaging Attacks

In the so-called “averaging attack”, the attacker is given a set S = {v · yi}, where v,y1,y2, . . .

are ring elements, and its goal is to use “averaging” to recover v · v, where v = v(x−1) is the

conjugate of v. It was used by Kaliski (in connection with patent [HKL+00]) and Gentry and
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Szydlo [GS02] in attacks against NTRU signature schemes [HKL+00, HPS01]. We review the

averaging attack here. Along the way, we update the attack so that it works within the ring of

integers of any cyclotomic field. (Previously, the attack focused on the ring Z[x]/(xm−1), as used

by NTRU signature schemes.)

The averaging attack is relevant to our constructions in the sense that, for certain (ill-advised)

distributions of our params, the attacker could use the averaging attack to recover nontrivial in-

formation. For example, in one version of our constructions, params includes a zero-tester pzt =

[hzκ/g]q and multiple terms {xi = [bi/z]q} with bi ∈ 〈g〉. Let b′i = bi/g. From params, the

attacker can derive the values {[pztx
κ
i ]q = hgκ−1 · b′i

κ}. Conceivably, depending on the particular

distributions of the parameters, the attacker could use averaging to remove the b′i’s and recover

hgκ−1.

We have a couple of defenses against this averaging attack. First, for our constructions it seems

that hgκ−1 (and other terms that could conceivably be obtained through averaging as explained in

Section 5.3.1) do not seem to be useful to the attacker (see Section 5.3.3). Second, as described in

Section 5.4, we choose our params according to distributions designed to make averaging attacks

useless. More precisely, we adapt an observation of Gentry, Peikert and Vaikuntanathan [GPV08]

in the context of lattice-based signatures – namely, that we can use a “good” lattice basis to generate

a transcript of lattice points according to a canonical distribution that reveals nothing about the

particular good basis that we are using (aside from the fact that it is “good”). We generate our

params according to such canonical distributions.

Now, let us describe how the averaging attack works. The distributions of v and the yi’s may

vary, but let us suppose for concreteness that the challenger samples v′ and {y′i} according to

Gaussian distributions v′ ← DZm,σ and y′i ← DZm,σ′ , interprets these as coefficient vectors of

polynomials in Z[x]/(xm − 1), and finally sets v ← v′ mod Φm(x) and yi ← y′i mod Φm(x).

Now, consider the average:

Ar = (1/r)
r∑
i=1

(v · yi) · (v · yi) = (v · v) ·

(
(1/r)

r∑
i=1

yi · yi

)
.
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Under the canonical embedding, we have:

σ(Ar) = σ(v · v) · σ(Yr), where Yr =

(
(1/r)

r∑
i=1

yi · yi

)
.

Toward understanding σ(Yr), first consider a single vector σ(yi · yi) in the summation. Recall

that, since we are working in a cyclotomic field, the embeddings are all complex and come in

conjugate pairs (σj, σ−j), where σj for j ∈ Z∗m denotes the embedding σj(ζm) = ζjm. Moreover,

for any a in the cyclotomic field, the values σj(a) and σ−j(a) are conjugate complex numbers,

and therefore σj(a) · σ−j(a) is a non-negative real number. Now, notice that σj(a) · σ−j(a) =

σj(a) ·σj(a) = σj(a ·a). This means that each vector σ(yi ·yi) in the summation consists entirely

of non-negative real numbers!

It is clear that, for any j, the average σj(Yr) = 1/r
∑r

i=1 σj(yi · yi) converges toward some

positive number (rather than tending toward 0). Moreover, by symmetry, it converges to the same

positive number for all j. Therefore, Ar converges to s · v · v for some known positive real scalar

s.

The imprecision of the average decreases with 1/
√
r. If the coefficients of v are only polyno-

mial in size, then the averaging attack needs only a polynomial number of samples to obtain all of

the coefficients of v · v to within less than 1/2, whereupon the attacker can round to obtain v · v

exactly. As we describe in Section B.6, even if the coefficients of v are large, a ε-approximation of

v · v, together with a basis of the ideal 〈v · v〉, is sufficient to recover v · v exactly when ε is some

inverse-quasi-polynomial function ofm. (Note that it is easy to generate a basis of the ideal 〈v · v〉

from a basis of the ideal 〈v〉, and that the latter (as mentioned previously) can likely be generated

from S.)

If the averaging attack is successful and we recover v · v, we can then use an algorithm by

Gentry and Szydlo [GS02]. This algorithm takes v · v and a basis of the ideal 〈v〉, and outputs the

actual element v in polynomial time. (See Section B.3.)
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B.3 Gentry-Szydlo: Recovering v from v · v and 〈v〉

Here, we describe an algorithm by Gentry and Szydlo [GS02] (the GS algorithm) that recovers v

from v · v and a basis of the ideal 〈v〉. The algorithm runs in polynomial time.

Gentry and Szydlo used the algorithm in combination with the averaging attack above to break

an NTRU signature scheme. They used a set of samples S = {v · yi} to approximate v · v with

sufficient precision to compute it exactly via rounding, and then invoked (but did not implement)

the GS algorithm to recover v (the secret signing key). In our setting, the idea would be to at-

tack our params using a similar approach. The GS algorithm was originally designed to work in

Z[x]/(xp − 1) for prime p. Here, we adapt it to a more general setting over the ring of integers

OK of the m-th cyclotomic field K. For convenience, we use R to refer to OK , and RP to denote

ZP [x]/Φm(x).

We describe the GS algorithm in detail, with proofs, because in Section B.6 we will extend

the algorithm to address the setting where our approximation of some generator u of a principal

ideal I = 〈u〉 (e.g., where u is v · v) is not precise enough to obtain the value u exactly via

rounding; we give a polynomial-time algorithm to recover u from a ε-approximation of it when ε

is inverse-quasi-polynomial.

Recall that the value v · v is the relative norm of v ∈ K = Q(ζm) with respect to the subfield

K+ = Q(ζm + ζ−1
m ) – i.e., v · v = NK/K+(v). The GS algorithm might be somewhat surprising,

since we do not know how to recover v efficiently from the norm NK/Q(v) and a basis of 〈v〉.

Indeed, the value NK/Q(v) is superfluous, since it can be derived from the basis of 〈v〉; therefore,

finding v would solve the so-called Principal Ideal Generator Problem, which seems infeasible.

One might also be surprised that NK/K+(v) and 〈v〉 are enough to uniquely define v, given that

NK/Q(v) and 〈v〉 only define v up to an infinite group of units. (See B.1 for a discussion on units

in cyclotomic number field.) Indeed, NK/K+(v) and 〈v〉 are not enough to uniquely define v – in

particular, if v′ = v · u for any torsion unit (root of unity) u, we have NK/K+(v′) = NK/K+(v)

and 〈v′〉 = 〈v〉. However, in attacks, it is typically sufficient to obtain v up to a small set of roots

of unity. On the other hand, if u is not a torsion unit – e.g., if it is a nontrivial cyclotomic unit
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– then we will have NK/K+(u) 6= 1 and therefore NK/K+(v′) 6= NK/K+(v). The reason we have

NK/K+(u) 6= 1 for nontorsion units is that, up to multiplication by a torsion unit, all nontorsion

units in K are already in the real subfield K+ – i.e., u = ζ im · u′ where u′ ∈ K+ is a nontorsion

unit. So, NK/K+(u) = u · u = u′2 6= 1.

The essential strategy of the GS algorithm is to combine algebra (in particular, Fermat’s Little

Theorem) with lattice reduction (LLL). By an extension of Fermat’s Little Theorem, for any prime

P = 1 mod m, we have that vP = v over RP . Unless v is a zero divisor in RP (there are only

poly(m, logNK/Q(v)) primes P for which this can happen), we have vP−1 = 1 over RP . Now,

suppose that we compute a LLL-reduced basis B of the ideal
〈
vP−1

〉
; this we can do in time

polynomial in m, P , and the bit-length of v. The shortest element w in the reduced basis has

the form vP−1 · a for some a. If it happens that ‖a‖∞ < P/2 – i.e., if a’s coefficients all have

magnitude less than P/2 – then we obtain a = [w]P exactly, and thus vP−1. From vP−1, we can

compute v in time polynomial in m, P , and the bit-length of v.

The actual algorithm is more complicated than this, since the essential strategy above leaves

two important issues unresolved.

• Issue 1 (How to Guarantee that a is small): LLL guarantees that it will find w ∈
〈
vP−1

〉
of

length at most 2(n−1)/2 ·λ1(
〈
vP−1

〉
). But this does not imply that a = w/vP−1 has length at

most 2(n−1)/2. Indeed,
〈
vP−1

〉
does not even define v uniquely (due to the group of units).

Since these units can have arbitrarily high Euclidean norm, a could be arbitrarily long.

• Issue 2 (LLL needs P to be exponential): Let us suppose that we could somehow use LLL

to ensure that ‖a‖∞ ≤ 2(n−1)/2. Then, we need P to be at least 2(n+1)/2 for the strategy to

work. But then vP−1 is so long that it takes exponential time even to write it down.

The algorithm resolves these two issues with the following two tools:

• Tool 1 (Implicit Lattice Reduction): We apply LLL implicitly to the multiplicands of vP−1 to

ensure that a = w/vP−1 has length at most 2(n−1)/2. The idea is that the relative norm v · v

actually reveals a lot about the “geometry” of v (and hence of vP−1). We use the relative

norm to “cancel” vP−1’s geometry so that LLL implicitly acts on the multiplicands.
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• Tool 2 (Polynomial Chains): We use P > 2(n+1)/2. However, we never compute on vP−1

directly. Instead, vP−1 and w are represented implicitly via a chain of polynomials that are

computed using LLL. From this chain, we compute a = [w]P exactly. Next, we perform

computations modulo a set of small primes p1, . . . , pt – specifically, we reduce a modulo

the pi’s, and use the polynomial chain to compute vP−1 modulo the pi’s. We do the same

thing for another large prime P ′ such that gcd(P − 1, P ′ − 1) = 2m, and then use the

Euclidean algorithm (in the exponent) to compute v2m modulo the pi’s. We chose the pi’s so

that 2‖v2m‖∞ <
∏
pi, so we obtain v2m exactly, from which we can compute v efficiently.

Below, we discuss the GS algorithm in detail. We begin with implicit lattice reduction, as

characterized by the following lemma.

Implicit Lattice Reduction.

Lemma B.7 ([GS02]). Let v ∈ R. Given v · v and the HNF basis B for the ideal lattice 〈v〉, we

can output an element w ∈ 〈v〉 such that w = v ·a and ‖a‖can2 ≤ 2(n−1)/2 ·
√
n in time polynomial

in m and the bit-length of v.

Proof. Consider how LLL works. LLL maintains a sequence of n basis vectors (w1, . . . ,wn). In

general, when LLL is deciding whether to perform an operation – a size-reduction step or a swap

step – the only information that LLL requires are all of the mutual dot products 〈wi,wj〉i,j∈[n]. In

short, LLL needs only the Gram matrix corresponding to its reduced-so-far lattice basis.

Now, consider LLL in our setting, as applied to ideal lattices under the canonical embed-

ding (without trying to do LLL implicitly yet). At a given stage, LLL has a sequence of vectors

(σ(w1), . . . , σ(wn)) where the wi’s are in 〈v〉. LLL (as before) considers only the mutual (Her-

mitian) inner products of the vectors in deciding whether to perform a step. These inner products

are of the form 〈σ(wi), σ(wj)〉 =
∑

k∈Z∗m
σk(wiwj).

Now, to do LLL implicitly in the canonical embedding – i.e., to use LLL to reduce the multi-

plicands ai = wi/v – LLL needs the mutual Hermitian inner products for i, j ∈ [n]:

〈σ(wi/v), σ(wj/v)〉 =
∑
k∈Z∗m

σk(wi/v)σk(wj/v) =
∑
k∈Z∗m

σk(1/vv)σk(wiwj).
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But all of the values σk(1/vv) can be computed efficiently from v · v (and the implicit LLL

algorithm actually possesses all of the vectors {σ(wi)}). Therefore, LLL has all of the information

it needs to decide whether to perform a step. To actually perform a step implicitly – size-reduction

or swapping – it simply applies the linear transformation dictated by the step to the vectors {σ(wi)}

that it has in its hand.

The bound ‖a‖can ≤ 2(n−1)/2·
√
n follows from the guarantee of LLL and the fact ‖1‖can =

√
n

in the canonical embedding.

Polynomial Chains.

Lemma B.8 (Theorem 1 in [GS02]). Let v0 ∈ R. Let k =
∑
ki2

i with ki ∈ {0, 1} be an integer

with r = blog2 kc. Let P be a prime such that v0 is not a zero divisor in RP . Then, given the input

v0 · v0 and a basis B0 of 〈v0〉, we may compute, in time polynomial in r, m, and the bit-length of

the input, the chains:

{vkr−1

0 · v2
0 · v1, . . . ,v

k0
0 · v2

r−1 · vr} and

{v0 · v0, . . . ,vr−1 · vr−1},

where for all i > 0, no vi is a zero divisor in RP , and ‖vi‖can2 < 2(n−1)/2
√
n. Using these

chains, we may compute vk0 · vr mod P in polynomial time. If k = P − 1 ≥ 2(n+1)/2
√
nγ2 with

P = 1 mod 2m, we may compute vr exactly, and thereafter use the above chains to compute

vP−1
0 mod Q in polynomial time for any prime Q such that vr is not a zero divisor in RQ. (Here,

γ2 denotes the maximal value of ‖a‖∞‖a‖can2
for any a in the number field.)

Proof. (Sketch) Consider the first term of the first chain: v
kr−1

0 · v2
0 · v1. For convenience, let

c = kr−1 + 2. Given v0 · v0 and a basis B0 for 〈v0〉, we efficiently compute vc0 · v0
c and a basis

B′0 for the ideal 〈vc0〉. Then, using implicit lattice reduction (Lemma B.7), we efficiently compute

w = vc0 · a with ‖a‖can2 < 2(n−1)/2
√
n. We set w to be the first term of our chain and set v1 ← a.

(Gentry and Szydlo provide techniques to handle the small possibility that v1 is a zero divisor in

RP .)
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Now, we compute v1 ·v1 as w ·w/(vc0 ·v0
c). Also, we compute a basis B1 of 〈v1〉, as follows.

Since B′0 generates 〈vc0〉, the terms of the basis B′0 of 〈vc0〉 have the form bi = vc0 · ai, where

R = 〈{ai}〉. Our basis B1 of 〈v1〉 consists of the terms bi ·w/(vc0 ·v0
c) = v1 ·ai, which generates

〈v1〉 since (again) R = 〈{ai}〉.

Now that we have v1 · v1 and a basis B1 of 〈v1〉, we continue the same process iteratively to

compute all of the terms in the chains.

We compute vk0 · vr mod P iteratively, as follows. For s ≤ r, let k(s) ∈ [0, 2s+1 − 1] denote

the s + 1 MSBs of k. Suppose, inductively, that we have computed vk
(s)

0 · vs mod P . (For s = 1,

this term already exists in the polynomial chain.) Then, we compute

vk
(s+1)

0 · vs+1 = (vk
(s)

0 · vs)2 · (vkr−s−1

0 · v2
s · vs+1)/(vs · vs)2 mod P

where the latter two multiplicands on the right-hand-side come from the polynomial chains. (No-

tice that this iterative computation is rather similar to the repeated squaring approach to modular

exponentiation.)

We compute vr exactly as vP−1
0 · vr mod P . (This works since the coefficients of vr have

magnitude at most ‖vi‖can2 · γ2 ≤ 2(n−1)/2
√
nγ2 < P/2.) Thereafter, we clearly can compute vP−1

0

modulo any prime Q for which vr is not a zero divisor in RQ.

Remainders of the GS Algorithm.

Lemma B.9 (Theorem 2 in [GS02]). Let v ∈ R. Then, given v · v and a basis B of 〈v〉, we may

compute v2m in time polynomial in m and the bit length of v.

Proof. We choose primes P and P ′ each large enough for Lemma B.8, where gcd(P − 1, P ′ −

1) = 2m and v is not a zero divisor in either RP or RP ′ (using Dirichlet’s theorem on primes in

arithmetic progression and the fact that v may be a zero divisor in RQ for only a finite number of

primes Q). By Lemma B.8, we can compute chains that will allow us to compute vP−1 mod pi

and vP
′−1 mod pi in polynomial time for any prime pi such that the values vr and vr

′ in the chains

are not zero divisors in Rpi . Choose a set of primes p1, . . . , pt that satisfy this condition and such
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that 2‖v2m‖∞ <
∏
pi. (We simply avoid the finite number of problematic primes.) Apply the

Euclidean algorithm in the exponent to compute v2m modulo each pi, and ultimately v2m exactly

using the Chinese Remainder Theorem.

Lemma B.10 (Similar to [GS02]). Let v ∈ R. Let w = vr where 2m divides r. Then, given w,

we may output a list L of r values v1, . . . ,vr in time polynomial in r and the bit length of w, such

that L includes v.

Lemma B.10 may seem trivial, and it certainly would be if r and m were relatively prime. In

this case, one could simply pick a prime Q > 2‖v‖∞ with gcd(r,Q − 1) = 1, set s = r−1 mod

m(Q− 1), and compute ws = vrs = v1+km(Q−1) = v in RQ (by Fermat’s Little Theorem), which

yields v exactly. Things become more complicated when gcd(r,m) 6= 1.

Proof. First, we observe that w does not uniquely determine v. Specifically, for any e = ±xi ∈ R

(the 2m values that are plus or minus an m-th root of unity in R), we have that v · e is also in R

and w = (v · e)r. However, we show that fixing v’s value at any (complex) primitive m-th root of

unity ζm also fixes v’s value at the other primitive m-th roots of unity, after which we may obtain

v via interpolation. Given w(ζm) = v(ζm)r, there are only r possibilities for v(ζm). By iterating

the procedure below for each possibility of v(ζm), the procedure will eventually use the “correct”

value, and the correct value of v will be included in the output.

For any prime Q, by an extension of Fermat’s Little Theorem, we have that a(x)Q = a(xQ)

in the ring RQ. Let Q = cr − b be a prime for some positive integers b < r and c such that w is

not a zero divisor in RQ and γ∞ · ‖w‖can∞ < Q/2. (Where that γ∞ denotes the maximal value of

‖a‖∞/‖a‖can∞ for a ∈ K.) Given that m divides r, we compute that (vr)c = vQvb = v(xQ)vb =

v(x−b)vb mod Q. Since γcan∞ ·‖v(x−b)vb‖can∞ ≤ γ∞ ·‖w‖∞ < Q/2, we efficiently recover the term

zb ← v(x−b)vb exactly. This allows us to compute v(ζ−bm ) = zb(ζm)/v(ζm)b. By choosing other

Q’s, we similarly compute zb for each b ∈ Z∗m, thereby compute v(ζ) for all complex primitive

m-th roots of unity ζ , and thus recover v.

Theorem B.11 ([GS02]). Let v ∈ R. Given v · v and the HNF basis B for the ideal lattice 〈v〉,

we can compute v in time polynomial in m and the bit-length of v.
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Proof. This follows from Lemmas B.9 and B.10.

Some Extensions.

Howgrave-Graham and Szydlo [HGS04] observed that one can use the GS algorithm to recover v

from the relative norm NK/K+ = v · v without a basis of 〈v〉, as long as one has a factorization

of NK/Q(v · v) = NK/Q(v)2. The idea is that, from NK/K+ = v · v and the factorization, one can

use Kummer-Dedekind (Theorem B.6) to generate a basis of some v′ such that v′ · v′ = v · v (v

may not be unique). If NK/Q(v) is composite, one can compute its factorization using a classical

sub-exponential factorization algorithm such as the number field sieve [LLMP90, LL93] or Shor’s

polynomial-time quantum algorithm [Sho97a].

Another way to view the GS and HS algorithms is the following. The averaging attack yields

the Gram matrix (essentially the co-variance matrix) BT
priv ·Bpriv associated to the secret lattice

basis of the signer. In early NTRU signature schemes, this Gram matrix happened to have a very

special form; it corresponded to the relative norm NK/K+(v) = v · v. The GS and HS algorithms

are able to factor the Gram matrix in this special case (using the auxiliary information 〈v〉 in the

case of the GS algorithm).

The NTRUSign signature scheme [HHGP+03] was proposed shortly after the Gentry-Szydlo

attack was announced. As noted in [GS02, HGS04], for NTRUSign, applying an averaging attack

similar to that described in Section B.2 still yields the Gram matrix BT
priv ·Bpriv associated to the

secret lattice basis of the signer. However, the Gram matrix in NTRUSign has a more complicated

form than in previous NTRU signature schemes. In particular, it is a 2× 2 block of ring elements:

BT
priv ·Bpriv =

 v · v + V ·V w · v + W ·V

v ·w + V ·W w ·w + W ·W


where v, w, V and W are short elements that constitute the signer’s private key. It remains an

open problem to efficiently factor Gram matrices of this form (as well as general Gram matrices),

even when given a basis (e.g., the HNF basis) of the lattice generated by Bpriv. Szydlo [Szy03]

showed that the Gram matrix factorization problem can be reduced to an oracle that distinguishes
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whether two Gram matrices are associated to bases of the same lattice, but it is unknown how to

instantiate this oracle efficiently in general.

The GS algorithm suggests an open problem about other relative norms: Is it possible to effi-

ciently recover v from 〈v〉 and the relative norm NK/L(v) when L is some subfield ofK other than

the index-2 real subfield K+? When L = Q, this is just the Principal Ideal Generator problem,

which seems infeasible in general, but perhaps the problem is feasible when the index [K : L]

is small or smooth. For example, suppose K is the m-th cyclotomic field for m = 2k and L is

an index-4 subfield. In this case, can we efficiently recover v from 〈v〉 and NK/L(v)? Can we,

perhaps, first recover NK/K+(v) from 〈v〉 and NK/L(v), and then use the GS algorithm to recover

v? It seems doubtful, since the GS algorithm relies implicitly on the fact that 〈v〉 and NK/K+(v)

define v uniquely up to torsion units, due to the special relationship between the cyclotomic units

and the subfield K+.

We remark that it is interesting that, while the GS algorithm clearly relies on the structure of

the cyclotomic unit group, this reliance is implicit; it would be worthwhile to make the connection

more explicit.

B.4 Nguyen-Regev: A Gradient Descent Attack

Nguyen and Regev [NR09] described how to extend averaging and key recovery attacks to signa-

ture schemes based on general lattices – in particular, to lattices underlying the GGH [GGH97]

and NTRUSign [HHGP+03] signature schemes (for suggested parameters). These attacks show

that averaging a transcript of lattice-based signatures can be a devastating attack in general, and

further recommend the approach taken by [GPV08] of ensuring that the distribution of signatures

has some canonical distribution (e.g., a Gaussian distribution) that is essentially independent of the

particular lattice basis that the signer is using.

Their attack is designed to “learn a parallelepiped”. That is, given samples {Bpriv · yi}

where the yi’s are (discretely) uniform over a hypercube, their attack converges upon the shape

of P(Bpriv) and ultimately outputs the private basis Bpriv.
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To understand the NR attack, it might help to understand why previous attacks failed to break

GGH and NTRUSign. Previous attacks, were (in some sense) too modular. They divided the attack

into two parts: 1) an averaging/covariance/second-moment attack which used samples {Bpriv ·yi}

to recover the Gram matrix BT
priv ·Bpriv associated to the secret lattice basis of the signer, and 2) a

“factoring” attack that either factored the relative norm [GS02, HGS04] or otherwise tried to factor

the Gram matrix [Szy03]. The second step, the factoring attack, sometimes used a lattice basis

as auxiliary information (as in the GS algorithm). But, crucially, the second step did not use the

samples. After using the samples to obtain the Gram matrix (and a lattice basis), previous attacks

simply discarded the samples. In this case, key recovery reduces to the Gram matrix factorization

problem (with a lattice basis), for which no general polynomial-time algorithm is known.

In contrast, the NR algorithm is (in some sense) less modular. They use the samples throughout

the attack. In particular, they first show that the 4-th moment (also known as the kurtosis) of a

transcript of signatures defines a global minimum related to the secret key. (Recall that, for a set of

vectors B = {b1, . . . , bn} ∈ GLn(R), the k-th moment of the parallelepiped P(B) over a vector

w is defined as momB,k(w) = Exp[〈u,w〉k] where u is chosen uniformly over P(B).) The group

of n × n invertible matrices with real coefficients will be denoted by GLn(R) and On(R) will

denote the subgroup of orthogonal matrices.

Lemma B.12 (Lemma 3 in [NR09]). Let B = {b1, . . . , bn} ∈ On(R). Then the global minimum

of momB,4(w) over the unit sphere of Rn is 1/5 and this minimum is obtained at ±b1, . . . ,±bn.

There are no other local minima.

Then, they use gradient descent to find this global minimum approximately, using the samples at

each stage of the descent to approximate the gradient function. This leads to the following theorem.

Theorem B.13 (Theorem 4 in [NR09]). For any c0 > 0 there exists a c1 > 0 such that given nc1

samples uniformly distributed over some parallelepiped P(B), B = {b1, . . . , bn} ∈ GLn(R), the

approximate gradient descent algorithm outputs with constant probability a vector B · ẽ where ẽ

is within `2 distance n−c0 of some standard basis vector ei.

Assuming the approximate solution output by the NR algorithm is “good enough” – that is, good
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enough to obtain B exactly via rounding – the NR attack succeeds. The secret bases in GGH

and NTRUSign have small entries (polynomial in the security parameter), and so the NR attack

succeeds asymptotically with only a polynomial number of signatures, and also performs quite

well in practice for suggested parameters.

One issue that the NR attack leaves somewhat unresolved is: What happens when the ap-

proximate solution output by the NR algorithm is not “good enough” to use rounding to get the

exact solution? Nguyen and Regev suggest using a CVP approximation algorithm, which they

observe performs reasonably well in practice on suggested parameters, but which of course is not

polynomial-time in general. This is a weakness also of the averaging attack described in Section

B.2. This weakness suggests an obvious way of fixing the schemes: choose the secret basis so that

its entries are super-polynomial or even sub-exponential integers, so that averaging attacks cannot

approximate the entries of the basis precisely enough to obtain them exactly via rounding. (Of

course, this makes the cryptographic construction less practical, but still polynomial-time.)

In Section B.6, we describe an attack that casts doubt on this fix, at least in the context of

ideal lattices. We show that we can recover v from 〈v〉 and a ε-approximation u of v when ε is

inverse-quasi-polynomial, even when the coefficients of v are arbitrarily large.

B.5 Ducas-Nguyen: Gradient Descent over Zonotopes and Deformed Par-

allelepipeds

The Nguyen-Regev algorithm was designed to “learn a parallelepiped”, Ducas and Nguyen [DN12b]

showed how to extend the algorithm to learn more complicated shapes, including zonotopes and

deformed parallelepipeds.

Recall that the parallelepiped associated to a basis B = {b1, . . . , bn} is the set P(B) =

{
∑
xi · bi : xi ∈ [−1/2, 1/2)}. Under certain circumstances (see Section B.4), Nguyen-Regev

learns the parallelepiped P(B) from samples of the form {B · r}, where r = (r1, . . . , rn) is

(discretely) uniform over an n-dimensional hypercube. This algorithm breaks certain signature

schemes, such as the basic version of NTRUSign [HHGP+03], where a transcript of signatures
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implicitly provides samples {Bpriv · r} where Bpriv is the signer’s private basis. A zonotope is a

generalization of a parallelepiped to a dependent set of vectors. Let M = {b1, . . . , bm} be a n×m

matrix for m > n. The zonotope formed by M is the set Z(M ) = {
∑
xi ·bi : xi ∈ [−1/2, 1/2)}.

Even though the vectors of M are dependent and the zonotope has a shape that is “closer to

spherical” than a parallelepiped (the corners typically have more obtuse angles), Ducas and Nguyen

show the Nguyen-Regev algorithm can be extended to this setting, when the samples have the

form {M · r}, where r is (discretely) uniform over an m-dimensional hypercube. Their new

algorithm does not provably always work, but it works quite well in practice. They used their

algorithm to break a version of NTRUSign with a “perturbations” countermeasure. In NTRUSign

with perturbations, the signer uses perturbations to obscure its private basis, in such a way that a

transcript of signatures induces the distribution of a zonotope rather than a parallelepiped.

Can the Nguyen-Regev and Ducas-Nguyen algorithms be extended even further? For example,

suppose we have samples of the form {B ·r} or {M ·r}, where r comes from a discrete Gaussian

distribution. In these cases, assuming that the coordinates of r have moderate deviation, one can

show [Pei10, AGHS12] that the samples also have a discrete Gaussian distribution over the lattice

generated by B or M , where the Gaussian is ellipsoidal according to the shape of B or M . In

the latter case, the ellipsoid get closer to a sphere as m gets larger relative to n (in the sense that

the singular values of M get closer together). A discrete ellipsoidal Gaussian does not have any

“corners” like a parallelepiped or zonotope, which are the local minima of the Nguyen-Regev and

Ducas-Nguyen algorithms. This fact seems to prevent a direct application of Nguyen-Regev or

Ducas-Nguyen. However, the shape of the ellipsoid still may provide some useful information.1

Interestingly, the re-randomization algorithm of our construction (see Section 4) involves adding

a term of the form (M · r)/z, where r has a spherical Gaussian distribution. Consequently, the

numerator of this added term has an ellipsoidal Gaussian distribution, where the numerator’s shape

depends on the shape of M . Note that as opposed to the case of signatures, re-randomization in

our construction is not supposed to hide M (in fact we give out M/z in the public parameters).

1For signature schemes, the signer can use the Gaussian samplers from [GPV08, Pei10] to get a perfectly spherical
distribution, thus ensuring that the transcript of signatures “leaks no information at all.”
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Rather, the purpose of re-randomization in is just to “drown out” the initial value that is being

randomized (while preserving its coset wrt the ideal I).

B.6 A New Algorithm for the Closest Principal Ideal Generator Problem

As usual, let R be the ring of integers for the m-th cyclotomic field. Let v ∈ R and I = 〈v〉.

Let u be a ε-approximation of v – i.e., 1/(1 + ε) ≤ |σk(v)/σk(u)| ≤ 1 + ε for all k ∈ Z∗m. How

efficiently can we recover the principal ideal generator v from I and u?

A cryptanalyst would hope that we can recover v whenever ε is bounded by some inverse-

polynomial function, so that the averaging and Nguyen-Regev attacks become more devastating.

Recall that the averaging and Nguyen-Regev attacks only output a 1/poly-approximate solution of

v (or a related value) when given a polynomial number of samples; afterward, the attacks attempt

to output an exact solution by rounding (or by solving approximate-CVP, but this is not efficient

in general). Thus, the averaging and Nguyen-Regev attacks can easily be escaped by choosing v

so that its coefficients are super-polynomial in size. However, a cryptanalyst could prevent this

escape with an efficient algorithm to recover v from a 1/poly-approximation of v, since this would

break the scheme regardless of how large v’s coefficients are.

Here, we show how to recover v in time polynomial in m and the bit-length of v, assuming

that ε is bounded by some inverse-quasi-polynomial function in m. This algorithm does not quite

fulfill the cryptanalyst’s dream, but it suggests a direction for future, possibly more devastating

attacks. The algorithm that we describe here is a natural extension of the Gentry-Szydlo algorithm

([GS02], see Section B.3). Whereas the GS algorithm uses the exact information about v’s geom-

etry provided by the relative norm NK/K+(v) = v ·v, our algorithm here tries to make-do with the

approximate information provided by u.

The algorithm follows the algebraic strategy of the GS algorithm. In particular, it invokes

Fermat’s Little Theorem to assert that vr = 1 mod P for prime P when (P − 1) and m divide r

(as long as v is not a zero divisor in RP ). Next, it applies (implicit) lattice reduction to the lattice

Ir to obtain a reduced element w = vr ·a. Finally, it tries to recover a (and hence v) by using the
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fact that a = w mod P . The main differences between the GS algorithm and our algorithm are:

• We require r to be only quasi-polynomial (not exponential): The GS algorithm has exact

information about v’s geometry, which allows it to derive exact information about vr’s ge-

ometry even when r is exponential (though this information is represented implicitly in the

polynomial chains). In contrast, we only have approximate information about v’s geometry,

and the accuracy of our information about vr’s geometry degrades exponentially with r. So,

we cannot have r much bigger than 1/ε.

• We will work modulo the product of many primes: To compensate for the fact that r cannot

be too large in our setting, we choose r so that (pi − 1) divides r for many primes pi, and

we work modulo P =
∏
pi. We heuristically estimate that we can achieve P = 2Ω(m)

when r = 2O(logm log logm). (Similar to the GS algorithm, we need P to exceed the LLL

approximation factor, and then some.)

Let us begin by considering how to set r and P . For some k to be determined, let q1, . . . , qk

be the first k primes, and set rk,m = m
∏
qi. Set Sk,m be the set of 2k products of m with a

subset product of q1, . . . , qk. Set Tk,m = {1 + s : s ∈ Sk,m}, Pk,m = {prime p ∈ Tk,m}, and

Pk,m =
∏

p∈Pk,m p. We claim that (rk,m, Pk,m) will tend to be a good choice for (r, P ). Certainly

it is true that rk,m is divisible by pi− 1 for the primes that divide P ; the remaining issue is the size

of rk,m and Pk,m.

First, consider the size of rk,m. We have:

ln rk,m = lnm+
k∑
i=1

ln qi = lnm+ qk + o(k) = lnm+ k ln k + o(k ln k),

where the second and third equalities follow from extensions of the Prime Number Theorem

(see Corollaries 8.2.7 and 8.2.8 in [BS96]). Assuming k ln k dominates m, we have rk,m =

2(1+o(1))k ln k.

Now, consider the size of Pk,m. Clearly, many elements of Tk,m are not prime. For example,

1 + s cannot be prime unless s is divisible by 2 – i.e., unless 2 is part of the subset product that
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forms s. Similarly, if s is a subset product not divisible by 3, then 1 + s has (roughly) only a 1/2

(versus the usual 1/3) probability of not being divisible by 3. But, aside from such observations,

we would heuristically expect that, by the Prime Number Theorem, an element t ∈ Tk,m has a

Ω(1/ ln t) chance of being prime. With this heuristic, we calculate:

Pk,m =
∏

p∈Pk,m

p =
∏

t∈Tk,m

tΩ(1/ ln t) = 2Ω(|Tk,m|) = 2Ω(2k) .

Assuming these heuristic estimates of rk,m and Pk,m are true, then for any constant c1, there

is a constant c2, such that setting k = blnmc + c2 ensures that Pk,m is at least 2c1·m. With this

value of k, we have rk,m = 2(1+o(1)) lnm ln lnm = m(1+o(1)) ln 2 ln lnm. In other words, while Pk,m is

exponential in m, rk,m is only slightly quasi-polynomial in m. For convenience, we capture these

observations in the following claim.

Claim B.14. Let ρm(x) denote the smallest positive integer such that there exist distinct primes

{pi} such that
∏
pi ≥ x and ρm(x) is divisible by m and (pi−1) for all i. Then, for x = 2Ω(m), we

have ρm(x) = 2(1+o(1)) ln lnx ln ln lnx. For x = 2Θ(m), we have ρm(x) = m(1+o(1)) ln lnm. The “proof”

of the claim is constructive – that is, one can (heuristically) generate a value rk,m that meets these

asymptotic bounds of ρm(x) by setting rk,m to be the product of m with the first c+ ln lnx primes

for some constant c.

Next, we revisit Lemma B.8, adapting implicit lattice reduction and the polynomial chains of

the GS algorithm to our setting.

Lemma B.15 (Adaptation of Lemma B.8). Let v0 ∈ R and letB0 be the HNF basisB0 for the ideal

lattice I0 = 〈v0〉. Let u0 be an ε-approximation of v0 – i.e., 1/(1 + ε) ≤ |σk(v0)/σk(u0)| ≤ 1 + ε

for all k ∈ Z∗m. Let k =
∑
ki2

i with ki ∈ {0, 1} be an integer with r = blog2 kc. Let P be an

integer such that v0 is not a zero divisor in RP . Then, given the input (B0,u0), we may compute,

in time polynomial in r, m, and the bit-length of the input, the chains:

{vkr−1

0 · v2
0/v1, . . . ,v

k0
0 · v2

r−1/vr}

where for all i > 0, no vi is a zero divisor in RP , and ‖vi‖can2 < 2(n−1)/2
√
n(1 + ε)k

(i)
, where

k(i) is the integer formed by the i + 1 most significant bits of k. Using these chains, we may
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compute vk0/vr mod P in polynomial time. If k and P are such that vk0 = 1 mod P and P >

2(n+1)/2
√
n(1 + ε)kγ2, we may compute vr exactly, and thereafter use the above chains to compute

vk0 mod Q in polynomial time for any prime Q such that vr is not a zero divisor in RQ.

Proof. Consider the first term of the first chain: vkr−1

0 ·v2
0/v1. For convenience, let c = 2kr+kr−1.

Given (B0,u0), we efficiently compute a basis B′0 for the ideal I ′0 = 〈uc0〉 /Ic. Apply LLL to B′0.

Set u1 ∈ I ′0 to be the element corresponding to the shortest vector in the reduced basis. Since

I ′0 is a principal (fractional) ideal, we have u1 = (u0/v0)cv1 for some v1 ∈ R. (To handle the

possibility that v1 is a zero divisor in RP , use techniques by Gentry and Szydlo.) Since v1 =

u1 · (v0/u0)c, we have that ‖v1‖can2 ≤ 2(n−1)/2 ·
√
n · (1 + ε)c by the guarantee of LLL and the

fact ‖vc0/uc0‖can∞ ≤ (1 + ε)c. Include the term uc0/u1 = vc0/v1 in the polynomial chain. Observe

that u1 is a (1 + ε)c approximation of v1. Also, we can efficiently generate a basis B1 of the ideal

I1 = 〈v1〉 = 〈u1〉 /I ′0.

The second term in the chain is supposed to be v
kr−2

0 · v2
1/v2. Given (B0, B1,u0,u1), we

efficiently compute a basis B′1 for the ideal I ′1 =
〈
u
kr−2

0 u2
1

〉
/(Ikr−2

0 I2
1 ). Apply LLL to B′1. Set

u2 ∈ I ′1 to be the element corresponding to the shortest vector in the reduced basis. Since I ′1
is a principal (fractional) ideal, we have u2 = (u0/v0)kr−2(u1/v1)2v2 for some v2 ∈ R. (To

handle the possibility that v2 is a zero divisor in RP , use techniques by Gentry and Szydlo.) Since

v2 = u2 · (v0/u0)kr−2(v1/u1)2, we have that ‖v2‖can2 ≤ 2(n−1)/2 ·
√
n · (1 + ε)4kr+2kr−1+kr−2 by the

guarantee of LLL and the fact ‖(v0/u0)kr−2(v1/u1)2‖can∞ ≤ (1+ε)4kr+2kr−1+kr−2 . Include the term

u
kr−2

0 · u2
1/u2 = v

kr−2

0 · v2
1/v2 in the polynomial chain. Observe that u2 is a (1 + ε)4kr+2kr−1+kr−2

approximation of v2. Also, we can efficiently generate a basis B2 of the ideal I2 = 〈v2〉 =

〈u2〉 /I ′1. One continues in this fashion until all the terms in the polynomial chain are computed.

The rest of the proof proceeds similar to the proof of Lemma B.8.

Since in Lemma B.8 k may be super-polynomial, we prefer not to compute vk0 directly. Instead,

as in Lemma B.9, we may compute v2m
0 by computing vk1

0 and vk2
0 for which gcd(k1, k2) = 2m,

and then applying the Euclidean algorithm in the exponent.
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Lemma B.16. Let v ∈ R and let B be the HNF basis for the ideal lattice I = 〈v〉. Let u be an

ε-approximation of v – i.e., 1/(1 + ε) ≤ |σk(v)/σk(u)| ≤ 1 + ε for all k ∈ Z∗m. Then, given u and

B, we may compute v2m in time polynomial in m and the bit length of v.

Proof. Similar to the proof of Lemma B.9.

Theorem B.17. Assuming Claim B.14, there is an ε = m−(1+o(1)) ln lnm such that, given the HNF

basis for the ideal lattice I = 〈v〉 for some v ∈ R and an ε-approximation u of v, we can compute

v in time polynomial in m and the bit-length of v.

Proof. This follows from Lemmas B.16 and B.10 and Claim B.14.

We remark that this algorithm implies that the bounded distance decoding problem (BDDP)

is easy for the Dirichlet unit lattice Λ for surprisingly low approximation factors. (Recall from

Section B.1 that the Dirichlet unit lattice is the lattice formed by the image of the units under the

map λ : K∗ → Rs1+s2 given by λ(a) = (ln |σ1(a)|, . . . , ln |σs1+s2(a)|).) Specifically, by the above

algorithm, given an ε-approximation u of a unit v, we can recover v exactly. So, in the Dirichlet

unit lattice, taking logarithms, given a vector λ(u) whose `∞ distance from Λ is at most ln(1+ε) ≈

ε, we can efficiently recover the vector in Λ-vector closest to λ(u). Really, this corollary is not so

surprising, since in the case of the m-th cyclotomic field for prime power m we already have in

our hands a fairly short basis of Λ given by the basis {λ(bi) : bi = (1− ζ im)/(1− ζm) : i ∈ Z∗m},

which gives more direct ways of achieving the same result. What is interesting is that, as with the

GS algorithm, the algorithm above does not explicitly use the structure of the unit group, though of

course it must be doing so implicitly; it would be interesting to make the connection more explicit.

B.7 Coppersmith Attacks

Coppersmith-type attacks [Cop96b, Cop96a] would seem to be ideally suited to ideal lattices, as

these attacks elegantly combine algebra and geometry. Somewhat surprisingly, however, they have

not yet resulted in attacks that are more effective than generic lattice reduction algorithms.
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Cohn and Heninger [CH11] applied Coppersmith’s method to solving the BDDP over ideal

lattices. In the BDDP over ideal lattices, one is given a basis B of an ideal lattice I ⊂ R and an

element u ∈ R that is very close to some v ∈ I; the task is to output v. Following Coppersmith’s

method, and to oversimplify a bit, Cohn and Heninger let x = u− v be the small unknown offset,

and generate numerous univariate polynomials that have x as a root modulo It for some large

exponent t. For example, any polynomial of the form ar · (u − X)t−r with a ∈ I evaluates at

x to an element that is in It, and therefore any linear combination of such polynomials does as

well. These polynomials form a lattice, and they apply LLL to this lattice to find a polynomial

p(X) with (somewhat) small coefficients. They design the lattice so that p(x) is small (by the

smallness of p’s coefficient vector and of ‖x‖∞), indeed smaller than any nonzero element in It.

Since p(x) = 0 mod It, they conclude that p(x) = 0 exactly, whereupon they recover x with

efficient characteristic-zero root finding techniques [Len83].

Coppersmith’s method works well in many settings involving integers – e.g., finding small solu-

tions of univariate equations [Cop96a], factoring when the MSBs of a factor are known [Cop96b],

factoring numbers of the form prq for large r [BDHG99], etc. The main obstacle to successfully

applying this method to ideals appears to be that the Coppersmith lattices involved have too high

dimension. The Coppersmith lattice used by Cohn and Heninger has n×n blocks where one would

have only a single entry in the integer case. In short, the lattice dimension is multiplied by n versus

the integer case, and consequently the lattice reduction step performs much worse.

We remark that the GS algorithm, as well as our algorithm for solving the closest principal ideal

generator problem (see Section B.6), have a strategy somewhat similar to Coppersmith’s method.

In particular, they use Coppersmith’s strategy of using lattice reduction and smallness to convert a

modular equation to an exact equation, and thereafter to extract roots in characteristic zero.

B.8 Dimension Halving in Principal Ideal Lattices

Dimension Halving when a generator is provided. Gentry [Gen01] observed that, given a gen-

erator v of a principal ideal I in the ring Z[x]/(xm − 1), one can construct a sub-lattice of I of
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dimension only b(m+ 1)/2c that contains a vector of length 2 · λ1(I). Therefore, one can hope to

find a short vector in I by reducing a lattice that has only half the usual dimension. We can update

this observation to obtain the following results about principal ideals in the ring of integers OK of

the m-th cyclotomic field K.

Lemma B.18. Let B be a Z-basis of a principal ideal I = 〈v〉 over the ring of integers OK

of the m-th cyclotomic field K. Let n = φ(m). Let Λ be the n/2-dimensional sub-lattice of I

given by Λ = {v · r : r ∈ OK+}, where OK+ is the ring of integers of the index-2 real subfield

K+ = Q(ζm + ζ−1
m ) of K. Then, λ1(Λ) ≤ 2λ1(I).

Proof. Let z ∈ I be such that ‖z‖can2 = λ1(I) (in the canonical embedding). Since I is principal,

z = v · a for some a ∈ OK . Let z′ = v · a, where a = a(x−1) is the conjugate of a. Then

‖z′‖2 = 〈σ(z′), σ(z′)〉 =
∑
k∈Z∗m

σk(z
′)σk(z′) =

∑
k∈Z∗m

σk(v)σk(a)σk(v)σk(a) =
∑
k∈Z∗m

σk(z)σk(z) = ‖z‖2.

Thus, z+z′ is a I-element with length at most 2λ1(I), and it is contained in the sub-lattice Λ.

Theorem B.19. Let v be a generator of a principal ideal I in the ring of integers OK of the m-th

cyclotomic field K. Given v, we can efficiently construct a n/2-dimensional sub-lattice of I that

contains some w ∈ I of length at most 2λ1(I).

Proof. From v, we can efficiently construct a lattice Λ that contains precisely all elements of the

form v · a for a ∈ OK+ . By Lemma B.18, the lattice Λ has the desired properties.

In fact, we can do slightly better. We can also consider the sub-lattice Λ− that contains precisely

all elements of the form v · a where a is in the n/2 dimensional lattice of elements that can be

expressed as b − b for some b ∈ OK . We can then show that either Λ or Λ− has a I-vector of

length at most
√

2λ1(I).

Next, we extend this dimension-halving attack on principal ideal lattices to the setting where

the attacker is not given a generator of the ideal (rather only a Z-basis of the ideal).
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Dimension Halving when a generator is not provided. Is approximate-SVP for principal ideal

lattices easier than it is for general ideal lattices (over the ring of integers of the m-th cyclotomic

number field)? For general ideal lattices, currently the best known algorithm for approximate-SVP

involves applying a lattice reduction algorithm (e.g., LLL [LLL82] or BKZ [Sch87]) to a lattice of

dimension n = φ(m). However, as we will see, the GS algorithm implies that, for principal ideal

lattices, we only need to reduce lattices of dimension n/2. In short, the GS algorithm gives much

stronger attacks on principal ideal lattices than we currently have on general ideal lattices (albeit

still exponential time for small approximation factors).

Theorem B.20. Let T (n, d, γ) denote the (worst-case) complexity of computing a γ-approximate

shortest vector in the lattice L(B), where B is the HNF basis of an n-dimensional lattice of

determinant at most d. Computing a γ-approximate shortest vector in the lattice L(B), where B

is a HNF basis of a principal ideal lattice I of norm d in the ring of integers Z[x]/Φm(x) of the

m-th cyclotomic field, has worst-case complexity at most poly(m, log d) + T (φ(m)/2, d, γ/2).

Proof. Let Iu = 〈u〉 be the ideal lattice for which we want to solve approximate-SVP, presented

as a Z-basis of {bi}i∈[n] with bi = u · ai and ai ∈ R. Formally set v = NK/Q(u) · (u/u) – that

is v is essentially the fraction u/u, except that we multiply by an appropriate integer to eliminate

denominators and ensure v ∈ R. Observe that, from B, we can compute both a basis of Iv = 〈v〉

and also the term v · v = NK/Q(u)2. Use the GS algorithm to recover v (and hence u/u) in

polynomial time.

From u/u and B, compute a Z-basis C = {ci = bi(1+u/u)}i∈[n] of the principal ideal lattice

Iu+u = 〈u + u〉. Observe that u + u is in the index-2 real subfield K+ = Q(ζm + ζ−1
m ). Project

the basis C down to a n/2-dimensional basis CK+ of the ideal Iu+u,K+ = Iu+u ∩ K+ ⊂ OK+ .

Observe that CK+ is a set of the form {(u + u) · r : r ∈ OK+}. Multiply each of the elements in

CK+ by u/(u + u) to get a basis BK+ = {u · r : r ∈ OK+} of the lattice Λ = L(BK+).

By Lemma B.19, Λ has a nonzero vector of length at most 2λ1(I). Therefore, we can solve

γ-approximate-SVP in I by solving γ/2-approximate-SVP in Λ, proving the theorem.

Note that non-principal ideal lattices, which in general can be expressed in terms of two gener-
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ators, do not appear to be vulnerable to this dimension-halving attack.

The params in our constructions implicitly reveal principal ideal lattices – e.g., the lattice

〈h · gκ−1〉 will likely be generated as an R-linear combination of the terms h · bκ1/g and h · bκ2/g

that can be computed from params. Therefore, we recommend using R of degree twice what one

would normally use for general ideal lattices.

Previous schemes have also used, or raised the possibility of using, principal ideals, includ-

ing fully homomorphic encryption schemes [Gen09b, SV10, GH11], homomorphic signatures

schemes [BF11a], and key agreement schemes [Buc91].
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